## Tutorial (Week 13)

## Properties of Def. Int., Derivative under Integral Sign

## Things leanred

(Abbreviation: In the following, all functions to be integrated are cont. functions on $[a, b]$. We also abbreviate $\int_{a}^{b} f(x) d x$ as $\int_{a}^{b}$ (Similar for $\int_{a}^{b} g(x) d x$ etc.

- $\int_{a}^{b}=-\int_{b}^{a} \quad \bullet \int_{a}^{b}=\int_{a}^{c}+\int_{c}^{b} \quad \bullet \int_{a}^{a}=0$
- If $f(x) \leq g(x) \forall x \in[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
- Integral Mean Value Theorem:

Theorem:
Assumption: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, then
Conclusion: $\exists \xi \in \underbrace{[a, b]}_{\text {closed interval }}$ such that $\left(\frac{1}{b-a}\right) \int_{a}^{b} f(x) d x=f(\xi)$.

- How to compute the derivative of a function defined by an integral.


## Assignments

1. (Properties of Def. Int.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function that is periodic (i.e. like "sine", "cosine", "tangent", its curves repeats itself.), or mathematically: There is a certain some positive real number $T$ (called the period , such that for each real number $x$, the following formula holds

$$
f(x+T)=f(x)
$$

(e.g. $\sin (x+T)=\sin (x)$, where $T=2 \pi$ )
(Question:) Let $f$ be as described above with period $T$, then

$$
\int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x
$$

2. Let $g$ be a continuous function defined on $[0,1]$, show that

$$
\int_{0}^{\pi / 2} g(\sin x) d x=\int_{0}^{\pi / 2} g(\cos x) d x
$$

3. In the preceding question, why did we choose the domain of $g$ to be $[0,1]$ ?
4. Let $p$ be a continuous function defined on $[0,1]$, show that

$$
\int_{0}^{\pi} x \cdot p(\sin x) d x=\pi \int_{0}^{\frac{\pi}{2}} p(\cos x) d x
$$

5. (Differentiation under Integral Sign)

Evaluate for any $x>1$ the following:

$$
\frac{d}{d x}\left(\int_{1}^{x e^{x}} \frac{\ln t}{t} d t\right)
$$

6. By using the substitution

$$
x=\pi-t
$$

evaluate

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

