Topics: Leibniz's Rule, Some Taylor Polynomial Tricks

1. By Mathematical Induction, show that
$(f \cdot g)^{(n)}=C_{0}^{n} f^{(n)} g^{(0)}+C_{1}^{n} f^{\prime} g^{(n-1)}+\cdots+C_{k}^{n} f^{(k)} g^{(n-k)}+\cdots+C_{n}^{n} f^{(n-n)} g^{(n)}$.
(or equivalently, in summation notation, the above is just

$$
\sum_{k=0}^{n} C_{k}^{n} f^{(k)} g^{(n-k)}
$$

where $f^{(0)}:=f$, i.e. the 0 th deriviatie of the function f is the function f itself. Also recall that

$$
C_{k}^{n}=\frac{n!}{k!(n-k)!}
$$

2. Find a, b, c, d, e, f in

$$
\left(1+2 x+x^{2}\right)\left(2+3 x+x^{2}+5 x^{3}\right)=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}
$$

3. Following the idea of the preceding question, find the constants p, q, r, s, t, u in
$\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1-x+x^{2}-x^{3}+\cdots\right)=p+q x+r x^{2}+s x^{3}+t x^{4}+u x^{5} \cdots$
$\left({ }^{1}\right)$
[^0]
Assignments:

1. Compute

$$
\int x^{5} \sqrt{1+x^{3}} d x
$$

2.

Compute an approximation to

$$
\int_{0}^{1} \frac{\sin (x)}{x} d x
$$

with error less than 0.01.
(Hint: You can use the inequality $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$, where $a<b$.)
3. Find $\int_{0}^{2 \pi} x|\cos (x)| d x$
4. Let k be a positive integer, and $a, b>0$. For any non-negative integer n, define

$$
I_{n}=\int_{a}^{b} x^{k}(\ln (x))^{n} d x
$$

Show that

$$
I_{n}=\left.\frac{x^{k+1}(\ln (x))^{n}}{k+1}\right|_{x=a} ^{x=b}-\frac{n}{k+1} I_{n-1} \quad \text { for } n \geq 1
$$

[^0]: ${ }^{1}$ The method of finding product of two 'power series' here is useful for solving question 1 in Assignment 4.

