THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5520
 Differential Equation \& Linear Algebra

Assignment 2

Due date: Oct 14 (Tue)

Exercise 2.1:

1. Find the reduced row echelon form of the following matrices.
(f) $\left(\begin{array}{cccc}1 & -2 & -4 & 5 \\ -2 & 4 & -3 & 1 \\ 3 & -6 & -1 & 4\end{array}\right)$
(g) $\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 2 & 3 & 4 \\ -1 & -2 & -1 & -2 & -3\end{array}\right)$
2. Solve the following systems of linear equations.
(c) $\left\{\begin{array}{c}2 x_{1}-x_{2}+5 x_{3}=15 \\ x_{1}+3 x_{2}-x_{3}=4 \\ x_{1}-4 x_{2}+6 x_{3}=11 \\ 3 x_{1}+9 x_{2}-3 x_{3}=12\end{array}\right.$
(e) $\left\{\begin{array}{l}x_{1}-2 x_{2}+x_{3}+x_{4}=1 \\ x_{1}-2 x_{2}+x_{3}-x_{4}=-1 \\ x_{1}-2 x_{2}+x_{3}+5 x_{4}=5\end{array}\right.$

Exercise 2.2:
3. Let A be a square matrix. Prove that A can be written as the sum of a symmetric matrix and a skew-symmetric matrix.

Exercise 2.3:

1. Find the inverse of the following matrices.
(b) $\left(\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}1 & -3 & -3 \\ -1 & 1 & 2 \\ 2 & -3 & -3\end{array}\right)$
2. Solve the following systems of equations by finding the inverse of the coefficient matrices.
(b) $\left\{\begin{array}{r}5 x_{1}+3 x_{2}+2 x_{3}=4 \\ 3 x_{1}+3 x_{2}+2 x_{3}=2 \\ x_{2}+x_{3}=5\end{array}\right.$.

Exercise 2.4:

1. Evaluate the following determinants.
(c) $\left|\begin{array}{cccc}5 & 3 & 0 & 6 \\ 4 & 6 & 4 & 12 \\ 0 & 2 & -3 & 4 \\ 0 & 1 & -2 & 2\end{array}\right|$
2. For the given matrix \mathbf{A}, evaluate \mathbf{A}^{-1} by finding the adjoint matrix $\operatorname{adj} \mathbf{A}$ of \mathbf{A}.
(b) $\mathbf{A}=\left(\begin{array}{ccc}2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2\end{array}\right)$
3. Use Cramer's Rule to solve the following linear systems.
(a) $\left\{\begin{array}{l}4 x_{1}-x_{2}-x_{3}=1 \\ 2 x_{1}+2 x_{2}+3 x_{3}=10 \\ 5 x_{1}-2 x_{2}-2 x_{3}=-1\end{array}\right.$

Exercise 2.5:

1. Find the equation of the parabola of the form $y=a x^{2}+b x+c$ passing through the given set of three points.
(a) $(0,-5),(2,-1),(3,4)$
2. Find the equation of the circle passing through the given set of three points.
(a) $(-1,-1),(6,6),(7,5)$
