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1 Ordinary differential equations of first-order

An equation of the form
F (x, y, y′, · · · , y(n)) = 0, x ∈ (a, b),

where y = y(x), y′ =
dy

dx
, · · · , y(n) =

dny

dxn
is called an ordinary differential equation (ODE)

of the function y.

Examples:

1. y′ − xy = 0,

2. y′′ − 3y′ + 2 = 0,

3. y sin(
dy

dx
) +

d2y

dx2
= 0.

The order of the ODE is defined to be the order of the highest derivative in the equation. In
solving ODE’s, we are interested in the following problems:

• Initial value problem(IVP): to find solutions y(x) which satisfies given initial value
conditions, e.g. y(x0) = y0, y

′(x0) = y′0 for some constants y0, y
′
0.

• Boundary value problem(BVP): to find solutions y(x) which satisfies given boundary
value conditions, e.g. y(x0) = y0, y(x1) = y1 for some constants y0, y1

An ODE is linear if it can be written as the form

pn(x)y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(t)y = g(x), pn(x) 6= 0.

The linear ODE is called homogeneous if g(x) ≡ 0, nonhomogeneous, otherwise. If an ODE
is not of the above form, we call it a non-linear ODE.

1.1 First-order linear ODE

The general form of a first-order linear ODE is

y′ + p(x)y = g(x).

The basic principle to solve a first-order linear ODE is to make left hand side a derivative of an
expression by multiplying both sides by a suitable factor called an integrating factor. To find
integrating factor, multiply both sides of the equation by ef(x), where f(x) is to be determined,
we have

ef(x)y′ + ef(x)p(x)y = g(x)ef(x).

Now, if we choose f(x) so that f ′(x) = p(x), then the left hand side becomes

ef(x)y′ + ef(x)f ′(x)y =
d

dx

(
ef(x)y

)
.

Thus we may take

f(x) =

∫
p(x)dx
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and the equation can be solved easily as follow.

y′ + p(x)y = g(x)

e
∫
p(x)dx dy

dx
+ e

∫
p(x)dxp(x)y = g(x)e

∫
p(x)dx

d

dx
e
∫
p(x)dxy = g(x)e

∫
p(x)dx

e
∫
p(x)dxy =

∫ (
g(x)e

∫
p(x)dx

)
dx

y = e−
∫
p(x)dx

∫ (
g(x)e

∫
p(x)dx

)
dx

Note: Integrating factor is not unique. One may choose an arbitrary integration constant for∫
p(x)dx. Any primitive function of p(x) gives an integrating factor for the equation.

Example 1.1.1. Find the general solution of y′ + 2xy = 0.

Solution: Multiplying both sides by ex
2
, we have

ex
2 dy

dx
+ ex

2
2xy = 0

d

dx
ex

2
y = 0

ex
2
y = C

y = Ce−x
2

�

Example 1.1.2. Solve (x2 − 1)y′ + xy = 2x, x > 1.

Solution: Dividing both sides by x2 − 1, the equation becomes

dy

dx
+

x

x2 − 1
y =

x

x2 − 1
.

Now

−
∫

x

x2 − 1
dx =

1

2
ln(x2 − 1) + C

Thus we multiply both sides of the equation by

exp(
1

2
ln(x2 − 1)) = (x2 − 1)

1
2

and get

(x2 − 1)
1
2
dy

dx
+

x

(x2 − 1)
1
2

y =
2x

(x2 − 1)
1
2

d

dx

(
(x2 − 1)

1
2 y
)

=
2x

(x2 − 1)
1
2

(x2 − 1)
1
2 y =

∫
2x

(x2 − 1)
1
2

dx

y = (x2 − 1)−
1
2

(
2(x2 − 1)

1
2 + C

)
y = 2 + C(x2 − 1)−

1
2

�
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Example 1.1.3. Solve y′ − y tanx = 4 sinx, x ∈ (−π
2 ,

π
2 ).

Solution: An integrating factor is

exp(−
∫

tanxdx) = exp(ln(cosx)) = cosx.

Multiplying both sides by cosx, we have

cosx
dy

dx
− y sinx = 4 sinx cosx

d

dx
(y cosx) = 2 sin 2x

y cosx =

∫
2 sin 2xdx

y cosx = − cos 2x+ C

y =
C − cos 2x

cosx

�

Example 1.1.4. A tank contains 1L of a solution consisting of 100 g of salt dissolved in water.
A salt solution of concentration of 20 gL−1 is pumped into the tank at the rate of 0.02 Ls−1, and
the mixture, kept uniform by stirring, is pumped out at the same rate. How long will it be until
only 60 g of salt remains in the tank?

Solution: Suppose there is x g of salt in the solution at time t s. Then x follows the following
differential equation

dx

dt
= 0.02(20− x)

Multiplying the equation by e0.02t, we have

dx

dt
+ 0.02x = 0.4

e0.02t
dx

dt
+ 0.02e0.02tx = 0.4e0.02t

d

dt
e0.02tx =

∫
0.4e0.02tdt

e0.02tx = 20e0.02t + C

x = 20 + Ce−0.02t

Since x(0) = 100, C = 80. Thus the time taken in second until 60 g of salt remains in the tank
is

60 = 20 + 80e−0.02t

e0.02t = 2

t = 50 ln 2

�
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Example 1.1.5. David would like to by a home. He had examined his budget and determined
that he can afford monthly payments of $20,000. If the annual interest is 6%, and the term of
the loan is 20 years, what amount can he afford to borrow?

Solution: Let $y be the remaining loan amount after t months. Then

dy

dt
=

0.06

12
y − 20, 000

dy

dt
− 0.005y = −20, 000

e−0.005t
dy

dt
− 0.005ye−0.005t = −20, 000e−0.005t

d

dt
(e−0.005ty) = −20, 000e−0.005t

e−0.005ty =
−20, 000e−0.005t

−0.005
+ C

y = 4, 000, 000 + Ce0.005t

Since the term of the loan is 20 years, y(240) = 0 and thus

4, 000, 000 + Ce0.005×240 = 0

C = −4, 000, 000

e1.2

= −1, 204, 776.85

Therefore the amount that David can afford to borrow is

y(0) = 4, 000, 000− 1, 204, 776.85e0.005(0)

= 2, 795, 223.15

Note: The total amount that David pays is $240× 20, 000 = $4, 800, 000. �

Exercise 1.1

1. Find the general solutions of the following first order linear differential equations.

(a) y′ + y = 4e3x

(b) 3xy′ + y = 12x

(c) y′ + 3x2y = x2

(d) x2y′ + xy = 1

(e) xy′ + y =
√
x

(f) xy′ = y + x2 sinx

(g) (x+1)y′−2y = (x+1)
7
2

(h) y′ cosx+ y sinx = 1

(i) xy′ + (3x+ 1)y = e−3x

2. Solve the following initial value problems.

(a) y′ − y = e2x; y(0) = 1

(b) y′ = (1− y) cosx; y(π) = 2

(c) (x2 + 4)y′ + 3xy = 3x; y(0) = 3

(d) (x+ 1)y′ + y = lnx; y(1) = 10

(e) x2y′ + 2xy = lnx; y(1) = 2

(f) xy′ + y = sinx; y(π) = 1

1.2 Separable equations

A separable equation is an equation of the form

dy

dx
= f(x)g(y).
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It can be solved as follows

dy

g(y)
= f(x)dx∫

dy

g(y)
=

∫
f(x)dx

Example 1.2.1. Find the general solution of y′ = 3x2y.

Solution:

dy

y
= 3x2dx∫

dy

y
=

∫
3x2dx

ln y = x3 + C ′

y = Cex
3

where C = eC
′

�

Example 1.2.2. Solve 2
√
x
dy

dx
= y2 + 1, x > 0.

Solution:

dy

y2 + 1
=

dx

2
√
x∫

dy

y2 + 1
=

∫
dx

2
√
x

tan−1 y =
√
x+ C

y = tan(
√
x+ C)

�

Example 1.2.3. Solve the initial value problem
dy

dx
=

x

y + x2y
, y(0) = −1.

Solution:

dy

dx
=

x

y(1 + x2)∫
ydy =

∫
x

1 + x2
dx

y2

2
=

1

2

∫
1

1 + x2
d(1 + x2)

y2 = ln(1 + x2) + C

Since y(0) = −1, C = 1. Thus

y2 = 1 + ln(1 + x2)

y = −
√

1 + ln(1 + x2)

�
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Example 1.2.4. (Logistic equation) Solve the initial value problem for the logistic equation

dy

dt
= ry(1− y/K), y(0) = y0

where r and K are constants.

Solution:

dy

y(1− y/K)
= rdt∫

dy

y(1− y/K)
dt =

∫
rdt∫ (

1

y
+

1/K

1− y/K

)
dt = rt

ln y − ln(1− y/K) = rt+ C
y

1− y/K
= ert+C

y =
Kert+C

K + ert+C

To satisfy the initial condition, we set

eC =
y0

1− y0/K

and obtain

y =
y0K

y0 + (K − y0)e−rt
.

Note: When t→∞,
lim
t→∞

y(t) = K.

�

Exercise 1.2

1. Find the general solution of the following separable equations.

(a) y′ + 2xy2 = 0

(b) y′ = 3
√
xy

(c) y′ = 6x(y − 1)
2
3

(d) y′ = y sinx

(e) yy′ = x(y2 + 1)

(f) y′ = 1 + x+ y + xy

2. Solve the following initial value problems.

(a) xy′ − y = 2x2y; y(1) = 1

(b) y′ = yex; y(0) = 2e

(c) 2yy′ =
x√

x2 − 16
; y(5) = 2

(d) y′ = 4x3y − y; y(1) = −3

(e) y′ tanx = y; y(π2 ) = π
2

(f) y′ = 3x2(y2 + 1); y(0) = 1

3. Solve the logistic equation
dy

dx
= 0.08y

(
1− y

1000

)
with initial condition y(0) = 100.
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1.3 Exact equations

We say that the equation
M(x, y)dx+N(x, y)dy = 0 (1.4.1)

is exact if
∂M

∂y
=
∂N

∂x
.

In this case, there exists a function f(x, y) such that{
∂f
∂x = M
∂f
∂y = N

Then the differential equation can be written as

∂f

∂x
dx+

∂f

∂y
dy = 0

df(x, y) = 0

Therefore the general solution of the differential equation is

f(x, y) = C.

To find f(x, y), first note that
∂f

∂x
= M.

Hence

f(x, y) =

∫
M(x, y)dx+ g(y).

Differentiating both sides with respect to y, we have

N(x, y) =
∂

∂y

∫
M(x, y)dx+ g′(y)

since
∂f

∂y
= N.

Now

N(x, y)− ∂

∂y

∫
M(x, y)dx

is independent of x (why?). Therefore

g(y) =

∫ (
N(x, y)− ∂

∂y

∫
M(x, y)dx

)
dy

and we obtain

f(x, y) =

∫
M(x, y)dx+ g(y)

=

∫
M(x, y)dx+

∫ (
N(x, y)− ∂

∂y

∫
M(x, y)dx

)
dy

Remark: Equation (1.4.1) is exact when F = (M(x, y), N(x, y)) defines a conservative vector
field. The function f(x, y) is called a potential function for F.
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Example 1.3.1. Solve (4x+ y)dx+ (x− 2y)dy = 0.

Solution: Since
∂

∂y
(4x+ y) = 1 =

∂

∂x
(x− 2y),

the equation is exact. We need to find F (x, y) such that

∂F

∂x
= M and

∂F

∂y
= N.

Now

F (x, y) =

∫
(4x+ y)dx

= 2x2 + xy + g(y)

To determine g(y), what we want is

∂F

∂y
= x− 2y

x+ g′(y) = x− 2y

g′(y) = −2y

Therefore we may choose g(y) = −y2 and the solution is

F (x, y) = 2x2 + xy − y2 = C.

�

Example 1.3.2. Solve
dy

dx
=

ey + x

e2y − xey
.

Solution: Rewrite the equation as

(ey + x)dx+ (xey − e2y)dy = 0.

Since
∂

∂y
(ey + x) = ey =

∂

∂x
(xey − e2y),

the equation is exact. Set

F (x, y) =

∫
(ey + x)dx

= xey +
1

2
x2 + g(y)

We want

∂F

∂y
= xey − e2y

xey + g′(y) = xey − e2y

g′(y) = −e2y
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Therefore we may choose g(y) = −1
2e

2y and the solution is

xey +
1

2
x2 − 1

2
e2y = C.

�

When the equation is not exact, sometimes it is possible to convert it to an exact equation by
multiplying it by a suitable integrating factor. Unfortunately, there is no systematic way of
finding integrating factor in general.

Example 1.3.3. Show that µ(x, y) = x is an integrating factor of (3xy+y2)dx+(x2+xy)dy = 0
and then solve the equation.

Solution: Multiplying the equation by x reads

(3x2y + xy2)dx+ (x3 + x2y)dy = 0.

Now

∂

∂y
(3x2y + xy2) = 3x2 + 2xy

∂

∂x
(x3 + x2y) = 3x2 + 2xy

Thus the above equation is exact and x is an integrating factor. To solve the equation, set

F (x, y) =

∫
(3x2y + xy2)dx

= x3y +
1

2
x2y2 + g(y)

Now we want

∂F

∂y
= x3 + x2y

x3 + x2y + g′(y) = x3 + x2y

g′(y) = 0

Therefore g(y) is constant and the solution is

x3y +
1

2
x2y2 = C.

�
Note: The equation in Example 1.3.3 is also a homogenous equation which will be discussed in
Section 1.4.

Example 1.3.4. Show that µ(x, y) = y is an integrating factor of ydx + (2x − ey)dy = 0 and
then solve the equation.

Solution: Multiplying the equation by y reads

y2dx+ (2xy − yey)dy = 0.
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Now

∂

∂y
y2 = 2y

∂

∂x
(2xy − yey) = 2y

Thus the above equation is exact and y is an integrating factor. To solve the equation, set

F (x, y) =

∫
y2dx

= xy2 + g(y)

Now we want

∂F

∂y
= 2xy − yey

2xy + g′(y) = 2xy − yey

g′(y) = −yey

g(y) = −
∫
yeydy

= −
∫
ydey

= −yey +

∫
eydy

= −yey + ey + C ′

Therefore the solution is
xy2 − yey + ey = C.

�

Exercise 1.3

1. For each of the following equations, show that it is exact and find the general solution.

(a) (5x+ 4y)dx+ (4x− 8y3)dy = 0

(b) (3x2 + 2y2)dx+ (4xy + 6y2)dy = 0

(c) (3xy2 − y3)dx+ (3x2y − 3xy2)dy = 0

(d) (1 + yexy)dx+ (2y + xexy)dy = 0

(e) (x3 + y
x)dx+ (y2 + lnx)dy = 0

(f) (cosx+ ln y)dx+ (xy + ey)dy = 0

2. For each of the following differential equations, find the value of k so that the equation is
exact and solve the equation

(a) (2xy2 − 3)dx+ (kx2y + 4)dy = 0

(b) (6xy−y3)dx+(4y+3x2 +kxy2)dy = 0

(c) (2xy2 + 3x2)dx+ (2xky + 4y3)dy = 0

(d) (3x2y3 + yk)dx+ (3x3y2 + 4xy3)dy = 0

3. For each of the following differential equations, show that the given function µ is an
integrator of the equation and then solve the equation.

(a) (3xy + y2)dx+ (x2 + xy)dy = 0; µ(x) = x

(b) ydx− xdy = 0; µ(y) = 1
y2

(c) ydx+ x(1 + y3)dy = 0; µ(x, y) =
1

xy

(d) (x− y)dx+ (x+ y)dy = 0; µ(x, y) =
1

x2 + y2



Ordinary differential equations of first-order 11

1.4 Homogeneous equations

A first order equation is homogeneous if it can be written as

dy

dx
= f

(y
x

)
.

The above equation can be solved by the substitution u = y/x. Then y = xu and

dy

dx
= u+ x

du

dx
.

Therefore the equation reads

u+ x
du

dx
= f(u)

du

f(u)− u
=

dx

x

which becomes a separable equation.

Example 1.4.1. Solve
dy

dx
=
x2 + y2

2xy
.

Solution: Rewrite the equation as

dy

dx
=

1 + (y/x)2

2y/x

which is a homogeneous equation. Using substitution y = xu, we have

u+ x
du

dx
=

dy

dx
=

1 + u2

2u

x
du

dx
=

1 + u2 − 2u2

2u
2udu

1− u2
=

dx

x∫
2udu

1− u2
=

∫
dx

x

− ln(1− u2) = lnx+ C ′

(1− u2)x = e−C
′

x2 − y2 − Cx = 0

where C = e−C
′
. �

Example 1.4.2. Solve (y + 2xe−y/x)dx− xdy = 0.

Solution: Rewrite the equation as

dy

dx
=

y + 2xe−y/x

x
=
y

x
+ 2e−y/x.
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Let u = y/x, we have

u+ x
du

dx
=

dy

dx
= u+ 2e−u

x
du

dx
= 2e−u

eudu = 2
dx

x∫
eudu =

∫
2
dx

x

eu = 2 lnx+ C

ey/x − 2 lnx = C

�

Exercise 1.4

1. Find the general solution of the following homogeneous equations.

(a) y′ =
x2 + 2y2

2xy

(b) xy′ = y +
√
x2 − y2

(c) xy′ = y + 2
√
xy

(d) x(x+ y)y′ = y(x− y)

(e) x2y′ = xy + y2

(f) x2y′ = xy + x2e
y
x

1.5 Bernoulli’s equations

An equation of the form
y′ + p(x)y = q(x)yn, n 6= 0, 1,

is called a Bernoulli’s equation. It is a non-linear equation and y(x) = 0 is always a solution
when n > 0. To find a non-trivial solution, we use the substitution

u = y1−n.

Then

du

dx
= (1− n)y−n

dy

dx
= (1− n)y−n (−p(x)y + q(x)yn)

du

dx
+ (1− n)p(x)y1−n = (1− n)q(x)

du

dx
+ (1− n)p(x)u = (1− n)q(x)

which is a linear differential equation of u.
Note: Don’t forget that y(x) = 0 is always a solution to the Bernoulli’s equation when n > 0.

Example 1.5.1. Solve
dy

dx
− y = e−xy2.

Solution: Let u = y1−2 = y−1,

du

dx
= −y−2 dy

dx
= −y−2

(
y + e−xy2

)
du

dx
+ y−1 = −e−x

du

dx
+ u = −e−x
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which is a linear equation of u. Multiplying both side by ex, we have

ex
du

dx
+ exu = −1

d

dx
(exu) = −1

exu = −x+ C

u = (C − x)e−x

y−1 = (C − x)e−x

Therefore the general solution is

y =
ex

C − x
or y = 0

�

Example 1.5.2. Solve x
dy

dx
+ y = xy3.

Solution: Let u = y1−3 = y−2,

du

dx
= −2y−3

dy

dx
du

dx
= −2y−3

x

(
−y + xy3

)
du

dx
− 2y−2

x
= −2

du

dx
− 2u

x
= −2

which is a linear equation of u. To solve it, multiply both side by exp(−
∫

2x−1dx) = x−2, we
have

x−2
du

dx
− 2x−3u = −2x−2

d

dx
(x−2u) = −2x−2

x−2u = 2x−1 + C

u = 2x+ Cx2

y−2 = 2x+ Cx2

y2 =
1

2x+ Cx2
or y = 0

�

Exercise 1.5

1. Find the general solution of the following Bernoulli’s equations.

(a) xy′ + y = x2y2 (b) x2y′ + 2xy = 5y4 (c) xy′ = y(x2y − 1)
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1.6 Substitution

In this section, we give some examples of differential equations that can be transformed to one
of the forms in the previous sections by a suitable substitution.

Example 1.6.1. Use the substitution u = ln y to solve xy′ − 4x2y + 2y ln y = 0.

Solution:

du

dx
= y′/y

x
du

dx
= 4x2 − 2 ln y

x2
du

dx
+ 2xu = 4x3

d

dx
x2u = 4x3

x2u =

∫
4x3dx

x2u = x4 + C

u = x2 +
C

x2

y = exp

(
x2 +

C

x2

)

�

Example 1.6.2. Use the substitution u = e2y to solve 2xe2yy′ = 3x4 + e2y.

Solution:

du

dx
= 2e2y

dy

dx

x
du

dx
= 2xe2y

dy

dx

x
du

dx
= 3x4 + e2y

1

x

du

dx
− 1

x2
u = 3x2

d

dx

(u
x

)
= 3x2

u

x
=

∫
3x2dx

u = x3 + C

e2y = x3 + C

y =
1

2
ln(x4 + Cx)

�
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An equation of the form
y′ + p1(x)y + p2(x)y2 = q(x)

is called a Riccati’s equation. If we know that y(x) = y1(x) is a particular solution, then the
equation can be transformed, using the substitution

y = y1 +
1

u

to a linear equation of u.

Example 1.6.3. Solve the Riccati’s equation y′ − y

x
= 1− y2

x2
given that y = x is a particular

solution.

Solution: Let

y = x+
1

u
.

We have

dy

dx
= 1− 1

u2
du

dx
1

x
y + 1− 1

x2
y2 = 1− 1

u2
du

dx

1

u2
du

dx
=

1

x2

(
x+

1

u

)2

− 1

x

(
x+

1

u

)
1

u2
du

dx
=

1

xu
+

1

x2u2

du

dx
− 1

x
u =

1

x2

which is a linear equation of u. An integrating factor is

exp

(
−
∫

1

x
dx

)
= exp(− lnx) = x−1.

Thus

x−1
du

dx
− x−2u = x−3

d

dx
(x−1u) = x−3

x−1u = − 1

2x2
+ C ′

u = − 1

2x
+ C ′x

u =
Cx2 − 1

2x

Therefore the general solution is

y = x+
2x

Cx2 − 1
or y = x.

�
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Example 1.6.4. Solve the Riccati’s equation y′ = 1 + x2 − 2xy + y2 given that y = x is a
particular solution.

Solution: Using the substitution

y = x+
1

u
.

We have

dy

dx
= 1− 1

u2
du

dx

1 + x2 − 2xy + y2 = 1− 1

u2
du

dx

1 + x2 − 2x(x+
1

u
) + (x+

1

u
)2 = 1− 1

u2
du

dx
du

dx
= −1

u = C − x

Therefore the general solution is

y = x+
1

C − x
or y = x.

�

Exercise 1.6

1. Solve the following differential equations by using the given substitution.

(a) xy′ − 4x2y + 2y ln y = 0; u = ln y

(b) y′ =
√
x+ y; u = x+ y

(c) y′ = (x+ y + 3)2; u = x+ y + 3

(d) y′ + ey + 1 = 0; u = e−y

2. Solve the following Riccati’s equations by the substitution y = y1 +
1

u
with the given

particular solution y1(x).

(a) x3y′ = y2 + x2y − x2; y1(x) = x (b) x2y′ − x2y2 = −2; y1(x) =
1

x

1.7 Reducible second-order equations

Some second-order differential equations can be reduced to an equation of first-order by a suit-
able substitution. First we consider the simplest case when the zeroth order derivative term y
is missing.
Dependent variable y missing:

F (x, y′, y′′) = 0

The substitution

p = y′, y′′ =
dp

dx
= p′,

reduces the equation into a first-order differential equation

F (x, p, p′) = 0.
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Example 1.7.1. Solve xy′′ + 2y′ = 6x.

Solution: Let p = y′. Then y′′ = p′ and the equation reads

xp′ + 2p = 6x

x2p′ + 2xp = 6x2

d

dx
(x2p) = 6x2

x2p = 2x3 + C1

y′ = 2x+ C1x
−2

y = x2 − C1x
−1 + C2

�

Example 1.7.2 (Free falling with air resistance). The motion of an free falling object near the
surface of the earth with air resistance proportional to velocity can be modeled by the equation

y′′ + ρy′ + g = 0,

where ρ is a positive constant and g is the gravitational acceleration. Solve the equation with

initial displacement y(0) = y0 and initial velocity
dy

dt
(0) = v0.

Solution: Let v =
dy

dt
. Then

d2y

dt2
=
dv

dt
and

dv

dt
+ ρv + g = 0∫ v

v0

dv

ρv + g
= −

∫ t

0
dt

1

ρ
ln(ρv + g) = −t

ln(ρv + g)− ln(ρv0 + g) = −ρt
ρv + g = (ρv0 + g)e−ρt

v = (v0 − vτ )e−ρt + vτ

where
vτ = −g

ρ
= lim

t→∞
v(t)

is the terminal velocity. Thus

dy

dt
= (v0 − vτ )e−ρt + vτ∫ y

y0

dy =

∫ t

0

(
(v0 − vτ )e−ρt + vτ

)
dt

y − y0 =

[
−1

ρ
(v0 − vτ )e−ρt + vτ t

]t
0

y =
1

ρ
(v0 − vτ )(1− e−ρt) + vτ t+ y0

�
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Independent variable x missing:
The substitution

p = y′, y′′ =
dp

dx
=
dp

dy

dy

dx
=
dp

dy
p

reduces the equation to the first-order equation

F

(
y, p, p

dp

dy

)
= 0.

Example 1.7.3. Solve yy′′ = y′2.

Solution: Let p = y′. Then y′′ = p
dp

dy
and the equation reads

yp
dp

dy
= p2

dp

p
=

dy

y∫
dp

p
=

∫
dy

y

ln p = ln y + C ′

p = C1y

dy

dx
= C1y∫

dy

y
=

∫
C1dx

ln y = C1x+ C ′

y = C2e
C1x

�

Example 1.7.4 (Escape velocity). The motion of an object projected vertically without propul-
sion from the earth surface is modeled by

d2r

dt2
= −GM

r2
,

where r is the distance from the earth’s center, G ≈ 6.6726 × 10−11Nm2kg2 is the constant of
universal gravitation and M ≈ 5.975×1024kg is the mass of the earth. Find the minimum initial
velocity v0 for the projectile to escape from the earth’s gravity.

Solution: Let v =
dr

dt
. Then

d2r

dt2
=
dv

dt
=
dv

dr

dr

dt
=
dv

dr
v and

v
dv

dr
= −GM

r2∫ v

v0

vdv = −
∫ r

r0

GM

r2
dr

1

2
(v2 − v20) = GM

(
1

r
− 1

r0

)
v20 = v2 + 2GM

(
1

r0
− 1

r

)
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where r0 ≈ 6.378 × 106m is the radius of the earth. In order to escape from earth’s gravity, r
can be arbitrary large and thus we must have

v20 ≥ 2GM

r0
+ v2 ≥ 2GM

r0

v0 ≥
√

2GM

r0
≈ 11, 180(ms−1)

�

Exercise 1.7

1. Find the general solution of the following differential equations by reducing them to first
order equations.

(a) yy′′ + (y′)2 = 0

(b) y′′ + 4y = 0

(c) xy′′ + y′ = 4x

(d) x2y′′ + 3xy′ = 2

(e) yy′′ + (y′)2 = yy′

(f) y′′ = 2y(y′)3

2. Find the general solution of the following differential equations.

(a) y′ = xy3

(b) y′ =
x2 + 2y

x

(c) y′ =
1− 9x2 − y
x− 4y

(d) xy′ + 2y = 6x2
√
y

(e) x2y′ − xy − y2 = 0

(f) x2y′ + 2xy2 = y2

(g) y′ = 1 + x2 + y2 + x2y2

(h) x2y′ + 2xy = x− 1

(i) (1− x)y′ + y − x = 0

(j) y′ +
6xy3 + 2y4

9x2y2 + 8xy3
= 0

(k) x3y′ = x2y − y3

(l) 3xy′ + x3y4 + 3y = 0



2 Linear systems and matrices

One objective of studying linear algebra is to understand the solutions to a linear system
which is a system of m linear equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
... =

...
am1x1 + am2x2 + · · · + amnxn = bm

.

The above system of linear equations can be expressed in the following matrix form
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1
x2
...
xn

 =


b1
b2
...
bm

 .

For each linear system, there associates an m× (n+ 1) matrix
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


which is called the augmented matrix of the system. We say that two linear systems are
equivalent if they have the same solution set.

2.1 Row echelon form

To solve a linear system, we may apply elementary row operation to its augmented matrix.

Definition 2.1.1. An elementary row operation is an operation on a matrix of one of the
following forms.

1. Multiply a row by a non-zero constant.

2. Interchange two rows.

3. Replace a row by its sum with a multiple of another row.

Definition 2.1.2. We say that two matrices A and B are row equivalent if we can obtain B
by applying successive elementary row operations to A.

We can use elementary row operations to solve a linear system because of the following theorem.

Theorem 2.1.3. If the augmented matrices of two linear systems are row equivalent, then the
two systems are equivalent, i.e., they have the same solution set.

Definition 2.1.4 (Row echelon form). A matrix E is said to be in row echelon form if it
satisfies the following three properties:

1. The first nonzero entry of each row of E is 1.
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2. Every row of E that consists entirely of zeros lies beneath every row that contains a nonzero
entry.

3. In each row of E that contains a nonzero entry, the number of leading zeros is strictly less
than the number of leading zeros in the preceding rows.

Theorem 2.1.5. Any matrix can be transformed into a row echelon form by applying successive
elementary row operations. The process of using elementary row operations to transform a
matrix to a row echelon form is called Gaussian elimination.

To find the solutions to a linear system, we can transform the associated augmented matrix into
row echelon form.

Definition 2.1.6 (Leading and free variables). Suppose we transform the augmented matrix of
a linear system to a row echelon form.

1. The variables that correspond to columns containing leading non-zero entries are called
leading variables.

2. All other variables are called free variables.

After the augmented matrix of a linear system is transformed to a row echelon form, we may
write down the solution set of the system easily by back substitution.

Example 2.1.7. Solve the linear system
x1 + x2 − x3 = 5
2x1 − x2 + 4x3 = −2
x1 − 2x2 + 5x3 = −4

.

Solution: The augmented matrix of the system is 1 1 −1 5
2 −1 4 −2
1 −2 5 −4


Using Gaussian elimination, we have 1 1 −1 5

2 −1 4 −2
1 −2 5 −4

 R2 → R2 − 2R1

R3 → R3 −R1−→

 1 1 −2 5
0 −3 6 −12
0 −3 6 −9


R2→− 1

3
R2−→

 1 1 −2 5
0 1 −2 4
0 −3 6 −9

 R3→R3+3R2−→

 1 1 −2 5
0 1 −2 4
0 0 0 3


The third row of the last matrix corresponds to the equation

0 = 3

which is absurd and thus has no solution. Therefore the solution set of the original linear system
is empty. In other words, the linear system is inconsistent. �
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Example 2.1.8. Solve the linear system
x1 + x2 + x3 + x4 + x5 = 2
x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2

.

Solution: Using Gaussian elimination, we have 1 1 1 1 1 2
1 1 1 2 2 3
1 1 1 2 3 2

 R2 → R2 −R1

R3 → R3 −R1−→

 1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 1 2 0


R3→R3−R2−→

 1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1


Thus the system is equivalent to the following system

x1 + x2 + x3 + x4 + x5 = 2
x4 + x5 = 1

x5 = −1
.

The solution of the system is
x5 = −1
x4 = 1− x5 = 2
x1 = 2− x2 − x3 − x4 − x5 = 1− x2 − x3

Here x1, x4, x5 are leading variables while x2, x3 are free variables. Another way of expressing
the solution is

(x1, x2, x3, x4, x5) = (1− α− β, α, β, 2,−1), α, β ∈ R.

�

Definition 2.1.9 (Reduced row echelon form). A matrix E is said to be in reduced row ech-
elon form (or E is a reduced row echelon matrix) if it satisfies all the following properties:

1. E is in row echelon form.

2. Each leading non-zero entry of E is the only nonzero entry in its column.

A matrix may have many different row echelon forms. However, any matrix is row equivalent
to a unique reduced row echelon form.

Theorem 2.1.10. Every matrix is row equivalent to one and only one matrix in reduced row
echelon form.

Example 2.1.11. Find the reduced row echelon form of the matrix 1 2 1 4
3 8 7 20
2 7 9 23

 .
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Solution:  1 2 1 4
3 8 7 20
2 7 9 23

 R2 → R2 − 3R1

R3 → R3 − 2R1−→

 1 2 1 4
0 2 4 8
0 3 7 15


R2→ 1

2
R2−→

 1 2 1 4
0 1 2 4
0 3 7 15

 R3→R3−3R2−→

 1 2 1 4
0 1 2 4
0 0 1 3


R1→R1−2R2−→

 1 0 −3 −4
0 1 2 4
0 0 1 3

 R1 → R1 + 3R3

R2 → R2 − 2R3−→

 1 0 0 5
0 1 0 −2
0 0 1 3


�

Example 2.1.12. Solve the linear system
x1 + 2x2 + 3x3 + 4x4 = 5
x1 + 2x2 + 2x3 + 3x4 = 4
x1 + 2x2 + x3 + 2x4 = 3

.

Solution:  1 2 3 4 5
1 2 2 3 4
1 2 1 2 3

 R2 → R2 −R1

R3 → R3 −R1−→

 1 2 3 4 5
0 0 −1 −1 −1
0 0 −2 −2 −2


R2→−R2−→

 1 2 3 4 5
0 0 1 1 1
0 0 −2 −2 −2

 R3→R3+2R2−→

 1 2 3 4 5
0 0 1 1 1
0 0 0 0 0


R1→R1−3R2−→

 1 2 0 1 2
0 0 1 1 1
0 0 0 0 0


Now x1, x3 are leading variables while x2, x4 are free variables. The solution of the system is

(x1, x2, x3, x4) = (2− 2α− β, α, 1− β, β), α, β ∈ R.

�

Theorem 2.1.13. Let
Ax = b

be a linear system, where A is an m× n matrix. Let R be the unique m× (n+ 1) reduced row
echelon matrix of the augmented matrix (A|b). Then the system has

1. no solution if the last column of R contains a leading non-zero entry.

2. unique solution if (1) does not holds and all variables are leading variables.

3. infinitely many solutions if (1) does not holds and there exists at least one free variable.

Now let’s consider a homogeneous system

Ax = 0

The system has an obvious solution x = 0. This solution is called the trivial solution.
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Theorem 2.1.14. Let A be an n× n matrix. Then homogeneous linear system

Ax = 0

with coefficient matrix A has only trivial solution if and only if A is row equivalent to the identity
matrix I.

Proof. The system Ax = 0 has at least one solution namely the trivial solution x = 0. Now
the trivial solution is the only solution if and only if the reduced row echelon matrix of (A|0) is
(I|0) (Theorem 2.1.13) if and only if A is row equivalent to I.

Exercise 2.1

1. Find the reduced row echelon form of the following matrices.

(a)

(
3 7 15
2 5 11

)

(b)

 1 2 3
1 4 1
2 1 9


(c)

 5 2 −5
9 4 −7
4 1 −7


(d)

 1 −4 −2
3 −12 1
2 −8 5


(e)

 2 2 4 2
1 −1 −4 3
2 7 19 −3



(f)

 1 −2 −4 5
−2 4 −3 1
3 −6 −1 4



(g)

 1 2 3 4 5
1 2 2 3 4
−1 −2 −1 −2 −3



(h)

 3 6 1 7 13
5 10 8 18 47
2 4 5 9 26



(i)

 0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1


2. Solve the following systems of linear equations.

(a)

{
x1 − 3x2 + 4x3 = 7

x2 − 5x3 = 2

(b)


3x1 + x2 − 3x3 = −4
x1 + x2 + x3 = 1
5x1 + 6x2 + 8x3 = 8

(c)


2x1 − x2 + 5x3 = 15
x1 + 3x2 − x3 = 4
x1 − 4x2 + 6x3 = 11
3x1 + 9x2 − 3x3 = 12

(d)


x1 + x2 − 2x3 + x4 = 9

x2 − x3 + 2x4 = 1
x3 − 3x4 = 5

(e)


x1 − 2x2 + x3 + x4 = 1
x1 − 2x2 + x3 − x4 = −1
x1 − 2x2 + x3 + 5x4 = 5

(f)


3x1 − 6x2 + x3 + 13x4 = 15
3x1 − 6x2 + 3x3 + 21x4 = 21
2x1 − 4x2 + 5x3 + 26x4 = 23
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2.2 Matrix arithmetic

A matrix is a rectangular array of real (or complex) numbers of the form
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


The horizontal arrays are called rows and the vertical arrays are called columns. There are
m rows and n columns in the above matrix and it is called an m × n matrix. We called the
number in the i-th row and j-th column, where is aij in the above matrix, the ij-th entry of
the matrix. If the number of rows of a matrix is equal to the number of its columns, then it is
called a square matrix.

Definition 2.2.1. The arithmetic of matrices are defined as follows.

1. Addition: Let A = [aij ] and B = [bij ] be two m× n matrices. Then

[A + B]ij = aij + bij .

That is 
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

+


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn



=


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .

2. Scalar multiplication: Let A = [aij ] be an m× n matrix and c be a scalar. Then

[cA]ij = caij .

That is

c


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n
ca21 ca22 · · · ca2n

...
...

. . .
...

cam1 cam2 · · · camn

 .

3. Matrix multiplication: Let A = [aij ] be an m × n matrix and B = [bjk] be an n × r.
Then their matrix product AB is an m× r matrix where its ik-th entry is

[AB]ik =

n∑
j=1

aijbjk = ai1b1k + ai2b2k + · · ·+ ainbnk.

For example: If A is a 3× 2 matrix and B is a 2× 2 matrix, then a11 a12
a21 a22
a31 a32

( b11 b12
b21 b22

)
=

 a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22


is a 3× 2 matrix.
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A zero matrix, denoted by 0, is a matrix whose entries are all zeros. An identity matrix,
denoted by I, is a square matrix that has ones on its principal diagonal and zero elsewhere.

Theorem 2.2.2 (Properties of matrix algebra). Let A, B and C be matrices of appropriate
sizes to make the indicated operations possible and a, b be real numbers, then following identities
hold.

1. A + B = B + A

2. A + (B + C) = (A + B) + C

3. A + 0 = 0 + A = A

4. a(A + B) = aA + aB

5. (a+ b)A = aA + bA

6. a(bA) = (ab)A

7. a(AB) = (aA)B = A(aB)

8. A(BC) = (AB)C

9. A(B + C) = AB + AC

10. (A + B)C = AC + BC

11. A0 = 0A = 0

12. AI = IA = A

Proof. All properties are obvious except (8) and we prove it here. Let A = [aij ] be m×n matrix,
B = [bjk] be n× r matrix and C = [ckl] be r × s matrix. Then

[(AB)C]il =
r∑

k=1

[AB]ikckl

=
r∑

k=1

 n∑
j=1

aijbjk

 ckl

=

n∑
j=1

aij

(
r∑

k=1

bjkckl

)

=
n∑
j=1

aij [BC]jl

= [A(BC)]il

Remarks:

1. AB is defined only when the number of columns of A equals the number of rows of B.
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2. In general, AB 6= BA even when they are both well-defined and of the same type. For
example:

A =

(
1 1
0 1

)
and B =

(
1 0
0 2

)
Then

AB =

(
1 1
0 1

)(
1 0
0 2

)
=

(
1 2
0 2

)
BA =

(
1 0
0 2

)(
1 1
0 1

)
=

(
1 1
0 2

)
3. AB = 0 does not implies that A = 0 or B = 0. For example:

A =

(
1 0
0 0

)
6= 0 and B =

(
0 0
0 1

)
6= 0

But

AB =

(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
.

Definition 2.2.3. Let A = [aij ] be an m × n matrix. Then the transpose of A is the n ×m
matrix defined by interchanging rows and columns and is denoted by AT , i.e.,

[AT ]ji = aij for 1 ≤ j ≤ n, 1 ≤ i ≤ m.

Example 2.2.4.

1.

(
2 0 5
4 −1 7

)T
=

 2 4
0 −1
5 7

 2.

 7 −2 6
1 2 3
5 0 4

T

=

 7 1 5
−2 2 0
6 3 4


�

Theorem 2.2.5 (Properties of transpose). For any m× n matrices A and B,

1. (AT )T = A;

2. (A + B)T = AT + BT ;

3. (cA)T = cAT ;

4. (AB)T = BTAT .

Definition 2.2.6 (Symmetric and skew-symmetric matrices). Let A be a square matrix.

1. We say that A is symmetric if AT = A.

2. We say that A is anti-symmetric (or skew-symmetric) if AT = −A.

Exercise 2.2

1. Find a 2× 2 matrix A such that A2 = 0 but A 6= 0.

2. Find a 2× 2 matrix A such that A2 = I but A 6= ±I.



Linear systems and matrices 28

3. Let A be a square matrix. Prove that A can be written as the sum of a symmetric matrix
and a skew-symmetric matrix.

4. Suppose A, B are symmetric matrices and C, D are skew-symmetric matrices such that
A + C = B + D. Prove that A = B and C = D

5. Let

A =

(
a b
c d

)
Prove that

A2 − (a+ d)A + (ad− bc)I = 0

6. Let A and B be two n× n matrices. Prove that (A + B)2 = A2 + 2AB + B2 if and only
if AB = BA.

2.3 Inverse

For square matrices, we have an important notion of inverse matrix.

Definition 2.3.1 (Inverse). A square matrix A is said to be invertible, if there exists a matrix
B such that

AB = BA = I.

We say that B is a (multiplicative) inverse of A.

Inverse of a matrix is unique if it exists. Thus it makes sense to say the inverse of a square
matrix.

Theorem 2.3.2. If A is invertible, then the inverse of A is unique.

Proof. Suppose B1 and B2 are multiplicative inverses of A. Then

B2 = B2I = B2(AB1) = (B2A)B1 = IB1 = B1.

The unique inverse of an invertible matrix A is denoted by A−1. Example T:he 2× 2 matrix

A =

(
a b
c d

)
is invertible if and only if ad− bc 6= 0, in which case

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Theorem 2.3.3. Let A and B be two invertible n× n matrices.

1. A−1 is invertible and (A−1)−1 = A;

2. For any nonnegative integer k, Ak is invertible and (Ak)−1 = (A−1)k;

3. The product AB is invertible and

(AB)−1 = B−1A−1;
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4. AT is invertible and
(AT )−1 = (A−1)T .

Proof. We prove (3) only.

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

Therefore AB is invertible and B−1A−1 is the inverse of AB.

Inverse matrix can be used to solve linear system.

Theorem 2.3.4. If the n×n matrix A is invertible, then for any n-vector b the system Ax = b
has the unique solution x = A−1b.

Example 2.3.5. Solve the system{
4x1 + 6x2 = 6
5x1 + 9x2 = 18

.

Solution: Let A =

(
4 6
5 9

)
. Then

A−1 =
1

6

(
9 −6
−5 4

)
=

(
3
2 −1
−5

6
2
3

)
Thus the solution is

x = A−1b =

(
3
2 −1
−5

6
2
3

)(
6
18

)
=

(
−9
7

)
Therefore (x1, x2) = (−9, 7). �

Next we discuss how to find the inverse of an invertible matrix.

Definition 2.3.6. A square matrix E is called an elementary matrix if it can be obtained by
performing a single elementary row operation on I.

The relationship between elementary row operation and elementary matrix is given in the fol-
lowing theorem which can be proved easily case by case.

Theorem 2.3.7. Let E be the elementary matrix obtained by performing a certain elementary
row operation on I. Then the result of performing the same elementary row operation on a
matrix A is EA.

Theorem 2.3.8. Every elementary matrix is invertible.

The above theorem can also by proved case by case. In stead of giving a rigorous proof, let’s
look at some examples.

Example 2.3.9. Examples of elementary matrices associated to elementary row operations and
their inverses.
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Elementary
row operation

Interchanging
two rows

Multiplying a row
by a nonzero constant

Adding a multiple of
a row to another row

Elementary matrix

 1 0 0
0 0 1
0 1 0

  1 0 0
0 1 0
0 0 3

  1 0 −2
0 1 0
0 0 1



Inverse

 1 0 0
0 0 1
0 1 0

  1 0 0
0 1 0
0 0 1

3

  1 0 2
0 1 0
0 0 1


Theorem 2.3.10. Let A be a square matrix. Then the following statements are equivalent.

1. A is invertible

2. A is row equivalent to I

3. A is a product of elementary matrices

Proof. The theorem follows easily from the fact that an n × n reduced row echelon matrix is
invertible if and only if it is the identity matrix I.

Let A be an invertible matrix. Then the above theorem tells us that there exists elementary
matrices E1,E2, · · · ,Ek such that

EkEk−1 · · ·E2E1A = I.

Multiplying both sides by (E1)
−1(E2)

−1 · · · (Ek−1)
−1(Ek)

−1 we have

A = (E1)
−1(E2)

−1 · · · (Ek−1)
−1(Ek)

−1.

Therefore
A−1 = EkEk−1 · · ·E2E1

by Proposition 2.3.3.

Theorem 2.3.11. Let A be a square matrix. Suppose we can preform elementary row operation
to the augmented matrix (A|I) to obtain a matrix of the form (I|E), then A−1 = E.

Proof. Let E1,E2, · · · ,Ek be elementary matrices such that

EkEk−1 · · ·E2E1(A|I) = (I|E).

Then the multiplication on the left submatrix gives

EkEk−1 · · ·E2E1A = I

and the multiplication of the right submatrix gives

E = EkEk−1 · · ·E2E1I = A−1.
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Example 2.3.12. Find the inverse of  4 3 2
5 6 3
3 5 2


Solution:  4 3 2

5 6 3
3 5 2

1 0 0
0 1 0
0 0 1

 R1→R1−R3−→

 1 −2 0
5 6 3
3 5 2

1 0 −1
0 1 0
0 0 1


R2 → R2 − 5R1

R3 → R3 − 3R1−→

 1 −2 0
0 16 3
0 11 2

1 0 −1
−5 1 5
−3 0 4

 R2→R2−R3−→

 1 −2 0
0 5 1
0 11 2

1 0 −1
−2 1 1
−3 0 4


R3→R3−2R2−→

 1 −2 0
0 5 1
0 1 0

1 0 −1
−2 1 1
1 −2 2

 R2↔R3−→

 1 −2 0
0 1 0
0 5 1

1 0 −1
1 −2 2
−2 1 1


R3→R3−5R2−→

 1 −2 0
0 1 0
0 0 1

1 0 −1
1 −2 2
−7 11 −9

 R1→R1+2R2−→

 1 0 0
0 1 0
0 0 1

3 −4 3
1 −2 2
−7 11 −9


Therefore

A−1 =

 3 −4 3
1 −2 2
−7 11 −9

 .

�

Example 2.3.13. Find a 3× 2 matrix X such that 1 2 3
2 1 2
1 3 4

X =

 0 −3
−1 4
2 1

 .

Solution:  1 2 3
2 1 2
1 3 4

0 −3
−1 4
2 1

 R2 → R2 − 5R1

R3 → R3 − 3R1−→

 1 2 3
0 −3 −4
0 1 1

0 −3
−1 10
2 4


R2↔R3−→

 1 2 3
0 1 1
0 −3 −4

0 −3
2 4
−1 10

 R3→R3+3R2−→

 1 2 3
0 1 1
0 0 −1

0 −3
2 4
5 22


R3→−R3−→

 1 2 3
0 1 1
0 0 1

0 −3
2 4
−5 −22

 R1 → R1 − 3R3

R2 → R2 −R3−→

 1 2 0
0 1 0
0 5 1

15 63
7 26
−5 −22


R1→R1−2R2−→

 1 0 0
0 1 0
0 0 1

1 11
7 26
−5 −22


Therefore we may take

X =

 1 11
7 26
−5 −22

 .
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�

Exercise 2.3

1. Find the inverse of the following matrices.

(a)

(
5 6
4 5

)
(b)

(
5 7
4 6

)

(c)

 1 5 1
2 5 0
2 7 1


(d)

 1 3 2
2 8 3
3 10 6



(e)

 1 −3 −3
−1 1 2
2 −3 −3


(f)

 1 −2 2
3 0 1
1 −1 2



(g)


4 0 1 1
3 1 3 1
0 1 2 0
3 2 4 1


2. Solve the following systems of equations by finding the inverse of the coefficient matrices.

(a)

{
x1 + x2 = 2
5x1 + 6x2 = 9

.
(b)


5x1 + 3x2 + 2x3 = 4
3x1 + 3x2 + 2x3 = 2

x2 + x3 = 5
.

3. Solve the following matrix equations for X.

(a)

 3 −1 0
−2 1 1
2 −1 4

X =

 2 1
2 0
3 5

. (b)

 1 −1 1
2 3 0
0 2 −1

X =

 −1 5
0 −3
5 −7

.

4. Suppose A is an invertible matrix and B is a matrix such that A + B is invertible. Show
that A(A + B)−1 is the inverse of I + BA−1.

5. Let A be a square matrix such that Ak = 0 for some positive integer k. Show that I−A
is invertible.

6. Show that if A and B are invertible matrices such that A+B is invertible, then A−1+B−1

is invertible.

7. Let A(t) be a matrix valued function such that all entries are differentiable functions of t
and A(t) is invertible for any t. Prove that

d

dt

(
A−1

)
= −A−1

(
d

dt
A

)
A−1

8. Suppose A is a square matrix such that there exists non-singular symmetric matrix1 with
A + AT = S2. Prove that A is non-singular.

1A square matrix S is symmetric if ST = S.
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2.4 Determinant

We can associate an important quantity called determinant to every square matrix. The de-
terminant of a square matrix has enormous meanings. For example if the its value is non-zero,
then the matrix is invertible, the homogeneous system associated with the matrix does not have
non-trivial solution and the row vectors, or column vectors of the matrix are linearly indepen-
dent.

The determinant of a square matrix can be defined inductively. The determinant of a 1×1 matrix
is the value of the its only entry. Suppose we have defined the determinant of an (n−1)×(n−1)
matrix. Then the determinant of an n× n matrix is defined in terms of its cofactors.

Definition 2.4.1 (Minor and cofactor). Let A = [aij ] be an n× n matrix.

1. The ij-th minor of A is the determinant Mij of the (n − 1) × (n − 1) submatrix that
remains after deleting the i-th row and the j-th column of A.

2. The ij-th cofactor of A is defined by

Aij = (−1)i+jMij .

As we can see, when defining cofactors of an n×n matrix, the determinants of (n− 1)× (n− 1)
matrices are involved. Now we can use cofactor to define the determinant of an n × n matrix
inductively.

Definition 2.4.2 (Determinant). Let A = [aij ] be an n× n matrix. The determinant det(A)
of A is defined inductively as follows.

1. If n = 1, then det(A) = a11.

2. If n > 1, then

det(A) =
n∑
k=1

a1kA1k = a11A11 + a12A12 + · · ·+ a1nA1n,

where Aij is the ij-th cofactor of A.

Example 2.4.3. When n = 1, 2 or 3, we have the following.

1. The determinant of a 1× 1 matrix is

|a11| = a11

2. The determinant of a 2× 2 matrix is∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

3. The determinant of a 3× 3 matrix is∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
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Example 2.4.4. ∣∣∣∣∣∣∣∣
4 3 0 1
3 2 0 1
1 0 0 3
0 1 2 1

∣∣∣∣∣∣∣∣
= 4

∣∣∣∣∣∣
2 0 1
0 0 3
1 2 1

∣∣∣∣∣∣− 3

∣∣∣∣∣∣
3 0 1
1 0 3
0 2 1

∣∣∣∣∣∣+ 0

∣∣∣∣∣∣
3 2 1
1 0 3
0 1 1

∣∣∣∣∣∣− 1

∣∣∣∣∣∣
3 2 0
1 0 0
0 1 2

∣∣∣∣∣∣
= 4

(
2

∣∣∣∣ 0 3
2 1

∣∣∣∣− 0

∣∣∣∣ 0 3
1 1

∣∣∣∣+ 1

∣∣∣∣ 0 0
1 2

∣∣∣∣)
−3

(
3

∣∣∣∣ 0 3
2 1

∣∣∣∣− 0

∣∣∣∣ 1 3
0 1

∣∣∣∣+ 1

∣∣∣∣ 1 0
0 2

∣∣∣∣)
−
(

3

∣∣∣∣ 0 0
1 2

∣∣∣∣− 2

∣∣∣∣ 1 0
0 2

∣∣∣∣+ 0

∣∣∣∣ 1 0
0 1

∣∣∣∣)
= 4 (2(−6))− 3 (3(−6) + 1(2))− (−2(2))

= 4

�

The following theorem can be proved by induction on n.

Theorem 2.4.5. Let A = [aij ] be an n× n matrix. Then

det(A) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n),

where Sn is the set of all permutations2 of {1, 2, · · · , n} and

sign(σ) =

{
1 if σ is an even permutation,
−1 if σ is an odd permutation.

Note that there are n! number of terms for an n×n determinant in the above formula. Here we
write down the 4! = 24 terms of a 4× 4 determinant.

∣∣∣∣∣∣∣∣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ =

a11a22a33a44 − a11a22a34a43 − a11a23a32a44 + a11a23a34a42
+a11a24a32a43 − a11a24a33a42 − a12a21a33a44 + a12a21a34a43
+a12a23a31a44 − a12a23a34a41 − a12a24a31a43 + a12a24a33a41
+a13a21a32a44 − a13a21a34a42 − a13a22a31a44 + a13a22a34a41
+a13a24a31a42 − a13a24a32a41 − a14a21a32a43 + a14a21a33a42
+a14a22a31a43 − a14a22a33a41 − a14a23a31a42 + a14a23a32a41

By Theorem 2.4.5, it is easy to see the following.

Theorem 2.4.6. The determinant of an n × n matrix A = [aij ] can be obtained by expansion
along any row or column, i.e., for any 1 ≤ i ≤ n, we have

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin

and for any 1 ≤ j ≤ n, we have

det(A) = a1jA1j + a2jA2j + · · ·+ anjAnj .

2A transposition is a permutation which swaps two numbers and keep all other fixed. A permutation is even,
odd if it is a composition of an even, odd number of transpositions respectively.
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Example 2.4.7. We can expand the determinant along the 3rd column in Example 2.4.4.∣∣∣∣∣∣∣∣
4 3 0 1
3 2 0 1
1 0 0 3
0 1 2 1

∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣
4 3 1
3 2 1
1 0 3

∣∣∣∣∣∣
= −2

(
−3

∣∣∣∣ 3 1
1 3

∣∣∣∣+ 2

∣∣∣∣ 4 1
1 3

∣∣∣∣)
= −2 (−3(8) + 2(11))

= 4

�

Theorem 2.4.8. Properties of determinant.

1. det(I) = 1;

2. Suppose that the matrices A1, A2 and B are identical except for their i-th row (or column)
and that the i-th row (or column) of B is the sum of the i-th row (or column) of A1 and
A2, then det(B) = det(A1) + det(A2);

3. If B is obtained from A by multiplying a single row (or column) of A by the constant k,
then det(B) = k det(A);

4. If B is obtained from A by interchanging two rows (or columns), then det(B) = −det(A);

5. If B is obtained from A by adding a constant multiple of one row (or column) of A to
another row (or column) of A, then det(B) = det(A);

6. If two rows (or columns) of A are identical, then det(A) = 0;

7. If A has a row (or column) consisting entirely of zeros, then det(A) = 0;

8. det(AT ) = det(A);

9. If A is a triangular matrix, then det(A) is the product of the diagonal elements of A;

10. det(AB) = det(A) det(B).

All the statements in the above theorem are simple consequences of Theorem 2.4.5 or Theorem
2.4.6 except (10) which will be proved later in this section (Theorem 2.4.16). Statements (3),
(4), (5) allow us to evaluate a determinant using row or column operations.
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Example 2.4.9. ∣∣∣∣∣∣∣∣
2 2 5 5
1 −2 4 1
−1 2 −2 −2
−2 7 −3 2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
0 6 −3 3
1 −2 4 1
0 0 2 −1
0 3 5 4

∣∣∣∣∣∣∣∣
 R1 → R1 − 2R2

R3 → R3 +R2

R4 → R4 + 2R2



= −

∣∣∣∣∣∣
6 −3 3
0 2 −1
3 5 4

∣∣∣∣∣∣
= −3

∣∣∣∣∣∣
2 −1 1
0 2 −1
3 5 4

∣∣∣∣∣∣
= −3

(
2

∣∣∣∣ −1 1
5 4

∣∣∣∣+ 3

∣∣∣∣ −1 1
2 −1

∣∣∣∣)
= −69

�

We can also use column operations.

Example 2.4.10. ∣∣∣∣∣∣∣∣
2 2 5 5
1 −2 4 1
−1 2 −2 −2
−2 7 −3 2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
2 6 −3 3
1 0 0 0
−1 0 2 −1
−2 3 5 4

∣∣∣∣∣∣∣∣
 C2 → C2 + 2C1

C3 → C3 − 4C1

C4 → C4 − C1



= −

∣∣∣∣∣∣
6 −3 3
0 2 −1
3 5 4

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
0 0 3
2 1 −1
−5 9 4

∣∣∣∣∣∣
(
C1 → C1 − 2C3

C2 → C2 + C3

)

= −3

∣∣∣∣ 2 1
−5 9

∣∣∣∣
= −69

�

Some determinants can be evaluated using the properties of determinants.
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Example 2.4.11. Let α1, α2, · · · , αn be real numbers and

A =


1 α1 α2 · · · αn
1 x α2 · · · αn
1 α1 x · · · αn
...

...
...

. . .
...

1 α1 α2 · · · x

 .

Show that
det(A) = (x− α1)(x− α2) · · · (x− αn).

Solution: Note that A is an (n+1)×(n+1) matrix. For simplicity we assume that α1, α2, · · · , αn
are distinct. Observe that we have the following 3 facts.

1. det(A) is a polynomial of degree n in x;

2. det(A) = 0 when x = αi for some i;

3. The coefficient of xn of det(A) is 1.

Then the equality follows by the factor theorem. �

Example 2.4.12. The Vandermonde determinant is defined as

V (x1, x2, · · · , xn) =

∣∣∣∣∣∣∣∣∣
1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

. . .
...

1 xn x2n · · · xn−1n

∣∣∣∣∣∣∣∣∣ .
Show that

V (x1, x2, · · · , xn) =
∏

1≤i<j≤n
(xj − xi).

Solution: Using factor theorem, the equality is a consequence of the following 3 facts.

1. V (x1, x2, · · · , xn) is a polynomial of degree n(n− 1)/2 in x1, x2, · · · , xn;

2. For any i 6= j, V (x1, x2, · · · , xn) = 0 when xi = xj ;

3. The coefficient of x2x
2
3 · · ·xn−1n of V (x1, x2, · · · , xn) is 1.

�

Now we are going to prove (10) of Theorem 2.4.8. The following lemma says that the statement
is true when one of the matrix is an elementary matrix.

Lemma 2.4.13. Let A = [aij ] be an n× n matrix and E be an n× n elementary matrix. Then

det(EA) = det(E) det(A).

Proof. The statement can be checked for each of the 3 types of elementary matrix E.
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Definition 2.4.14. Let A be a square matrix. We say that A is singular if the system Ax = 0
has non-trivial solution. A square matrix is non-singular if it is not singular.

Theorem 2.4.15. The following conditions for an n× n matrix A are equivalent.

1. A is non-singular, i.e., the system Ax = 0 has only trivial solution x = 0.

2. A is invertible, i.e., A−1 exists.

3. det(A) 6= 0.

4. A is row equivalent to I.

5. For any n-column vector b, the system Ax = b has a unique solution.

6. For any n-column vector b, the system Ax = b has a solution.

Proof. We prove (3)⇔(4) and leave the rest as an exercise. Multiply elementary matrices
E1,E2, · · · ,Ek to A so that

R = EkEk−1 · · ·E1A

is in reduced row echelon form. Then by Lemma 2.4.13, we have

det(R) = det(Ek) det(Ek−1) · · · det(E1) det(A).

Since determinant of elementary matrices are always nonzero, we have det(A) is nonzero if and
only if det(R) is nonzero. It is easy to see that the determinant of a reduced row echelon matrix
is nonzero if and only if it is the identity matrix I.

Theorem 2.4.16. Let A and B be two n× n matrices. Then

det(AB) = det(A) det(B).

Proof. If A is not invertible, then AB is not invertible and det(AB) = 0 = det(A) det(B).
If A is invertible, then A is row equivalent to I and there exists elementary matrices E1,E2, · · · ,Ek

such that
EkEk−1 · · ·E1 = A.

Hence

det(AB) = det(EkEk−1 · · ·E1B)

= det(Ek) det(Ek−1) · · · det(E1) det(B)

= det(EkEk−1 · · ·E1) det(B)

= det(A) det(B).

Definition 2.4.17 (Adjoint matrix). Let A be a square matrix. The adjoint matrix of A is

adjA = [Aij ]
T ,

where Aij is the ij-th cofactor of A. In other words,

[adjA]ij = Aji.
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Theorem 2.4.18. Let A be a square matrix. Then

A(adjA) = (adjA)A = det(A)I,

where adjA is the adjoint matrix of A. In particular if A is invertible, then

A−1 =
1

det(A)
adjA.

Proof. The second statement follows easily from the first. For the first statement, we have

[AadjA]ij =
n∑
l=1

ail[adjA]lj

=
n∑
l=1

ailAjl

= δij det(A)

where

δij =

{
1, i = j
0, i 6= j

.

Therefore A(adjA) = det(A)I and similarly (adjA)A = det(A)I.

Example 2.4.19. Find the inverse of

A =

 4 3 2
5 6 3
3 5 2


Solution:

det(A) = 4

∣∣∣∣ 6 3
5 2

∣∣∣∣− 3

∣∣∣∣ 5 3
3 2

∣∣∣∣+ 2

∣∣∣∣ 5 6
3 5

∣∣∣∣ = 4(−3)− 3(1) + 2(7) = −1,

adjA =



∣∣∣∣ 6 3
5 2

∣∣∣∣ −
∣∣∣∣ 3 2

5 2

∣∣∣∣ ∣∣∣∣ 3 2
6 3

∣∣∣∣
−
∣∣∣∣ 5 3

3 2

∣∣∣∣ ∣∣∣∣ 4 2
3 2

∣∣∣∣ −
∣∣∣∣ 4 2

5 3

∣∣∣∣∣∣∣∣ 5 6
3 5

∣∣∣∣ −
∣∣∣∣ 4 3

3 5

∣∣∣∣ ∣∣∣∣ 4 3
5 6

∣∣∣∣


=

 −3 4 −3
−1 2 −2
7 −11 9

 .

Therefore

A−1 =
1

−1

 −3 4 −3
−1 2 −2
7 −11 9

 =

 3 −4 3
1 −2 2
−7 11 −9

 .

�

Theorem 2.4.20 (Cramer’s rule). Consider the n× n linear system Ax = b, with

A =
[

a1 a2 · · · an
]

where a1,a2, · · · ,an are the column vectors of A. If det(A) 6= 0, then the i-th entry of the
unique solution x = (x1, x2, · · · , xn) is

xi = det(A)−1 det(
[

a1 · · · ai−1 b ai+1 · · · an
]
),

where the matrix in the last factor is obtained by replacing the i-th column of A by b.
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Proof. For i = 1, 2, · · · , n, we have

xi = [A−1b]i

=
1

det(A)
[(adjA)b]i

=
1

det(A)

n∑
l=1

Alibl

=
1

det(A)
det(

[
a1 · · · ai−1 b ai+1 · · · an

]
)

Example 2.4.21. Use Cramer’s rule to solve the linear system
x1 + 4x2 + 5x3 = 2
4x1 + 2x2 + 5x3 = 3
−3x1 + 3x2 − x3 = 1

.

Solution:

det(A) =

∣∣∣∣∣∣
1 4 5
4 2 5
−3 3 −1

∣∣∣∣∣∣ = 29.

Thus by Cramer’s rule,

x1 =
1

29

∣∣∣∣∣∣
2 4 5
3 2 5
1 3 −1

∣∣∣∣∣∣ =
33

29

x2 =
1

29

∣∣∣∣∣∣
1 2 5
4 3 5
−3 1 −1

∣∣∣∣∣∣ =
35

29

x3 =
1

29

∣∣∣∣∣∣
1 4 2
4 2 3
−3 3 1

∣∣∣∣∣∣ = −23

29

�

Exercise 2.4

1. Evaluate the following determinants.

(a)

∣∣∣∣∣∣
3 1 0
−2 −4 3
5 4 −2

∣∣∣∣∣∣

(b)

∣∣∣∣∣∣
1 4 −2
3 2 0
−1 4 3

∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣∣
5 3 0 6
4 6 4 12
0 2 −3 4
0 1 −2 2

∣∣∣∣∣∣∣∣
(d)

∣∣∣∣∣∣∣∣
0 1 2 3
1 1 1 1
−2 −2 3 3
1 2 −2 −3

∣∣∣∣∣∣∣∣
2. Suppose A is a n × n non-singular matrix and det(A) = a. Find the determinant of the

following matrices in terms of n and a.
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(a) AT

(b) A2

(c) −A

(d) 3A

(e) A−1

(f) adjA

3. For the given matrix A, evaluate A−1 by finding the adjoint matrix adjA of A.

(a) A =

 2 5 5
−1 −1 0
2 4 3

 (b) A =

 2 −3 5
0 1 −3
0 0 2

 (c) A =

 1 3 0
−2 −3 1
0 1 1


4. Use Cramer’s rule to solve the following linear systems.

(a)


4x1 − x2 − x3 = 1
2x1 + 2x2 + 3x3 = 10
5x1 − 2x2 − 2x3 = −1

(b)


−x1 + 2x2 − 3x3 = 1
2x1 + x3 = 0
3x1 − 4x2 + 4x3 = 2

(c)


x1 + 2x3 = 6
−3x1 + 4x2 + 6x3 = 30
−x1 − 2x2 + 3x3 = 8

(d)


x1 − 4x2 + x3 = 6
4x1 − x2 + 2x3 = −1
2x1 + 2x2 − 3x3 = −20

5. Show that ∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣ = (b− a)(c− a)(c− b)

6. Let a(t), b(t), c(t), d(t) be differentiable functions of t. Prove that

d

dt

∣∣∣∣ a(t) b(t)
c(t) d(t)

∣∣∣∣ =

∣∣∣∣ a′(t) b′(t)
c(t) d(t)

∣∣∣∣+

∣∣∣∣ a(t) b(t)
c′(t) d′(t)

∣∣∣∣
2.5 Linear equations and curve fitting

Given n+ 1 points on the coordinates plane with distinct x-coordinates, it is known that there
exists a unique polynomial of degree at most n which fits the n+ 1 points. The formula for this
polynomial which is called the interpolation formula, can be written in terms of determinant.

Theorem 2.5.1. Let n be a non-negative integer, and (x0, y0), (x1, y1), · · · , (xn, yn) be n + 1
points in R2 such that xi 6= xj for any i 6= j. Then there exists unique polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

of degree at most n such that p(xi) = yi for all 0 ≤ i ≤ n. The coefficients of p(x) satisfy the
linear system 

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn




a0
a1
...
an

 =


y0
y1
...
yn

 .

Moreover, we can write down the polynomial function y = p(x) directly as∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xn y
1 x0 x20 · · · xn0 y0
1 x1 x21 · · · xn1 y1
...

...
...

. . .
...

...
1 xn x2n · · · xnn yn

∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Proof. Expanding the determinant, one sees that the equation is of the form y = p(x) where
p(x) is a polynomial of degree at most n. Observe when (x, y) = (xi, yi) for some 0 ≤ i ≤ n, two
rows of the determinant would be the same and thus the determinant must be equal to zero.
Moreover, it is well known that such polynomial is unique.

Example 2.5.2. Find the equation of straight line passes through the points (x0, y0) and (x1, y1).

Solution: The equation of the required straight line is∣∣∣∣∣∣
1 x y
1 x0 y0
1 x1 y1

∣∣∣∣∣∣ = 0

(y0 − y1)x+ (x1 − x0)y + (x0y1 − x1y0) = 0

�

Example 2.5.3. Find the cubic polynomial that interpolates the data points (−1, 4), (1, 2), (2, 1)
and (3, 16).

Solution: The required equation is∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 −1 1 −1 4
1 1 1 1 2
1 2 4 8 1
1 3 9 27 16

∣∣∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 −1 1 −1 4
0 2 0 2 −2
0 3 3 9 −3
0 4 8 28 12

∣∣∣∣∣∣∣∣∣∣
= 0

...∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 0 0 0 7
0 1 0 0 −3
0 0 1 0 −4
0 0 0 1 2

∣∣∣∣∣∣∣∣∣∣
= 0

−7 + 3x+ 4x2 − 2x3 + y = 0

y = 7− 3x− 4x2 + 2x3

�

Using the same method, we can write down the equation of the circle passing through 3 given
distinct non-colinear points directly without solving equations.

Example 2.5.4. Find the equation of the circle that is determined by the points (−1, 5), (5,−3)
and (6, 4).
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Solution: The equation of the required circle is∣∣∣∣∣∣∣∣
x2 + y2 x y 1

(−1)2 + 52 −1 5 1
52 + (−3)2 5 −3 1

62 + 42 6 4 1

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
x2 + y2 x y 1

26 −1 5 1
34 5 −3 1
52 6 4 1

∣∣∣∣∣∣∣∣ = 0

...∣∣∣∣∣∣∣∣
x2 + y2 x y 1

20 0 0 1
4 1 0 0
2 0 1 0

∣∣∣∣∣∣∣∣ = 0

x2 + y2 − 4x− 2y − 20 = 0

�

Exercise 2.5

1. Find the equation of the parabola of the form y = ax2 + bx+ c passing through the given
set of three points.

(a) (0,−5), (2,−1), (3, 4) (b) (−2, 9), (1, 3), (2, 5) (c) (−2, 5), (−1, 2), (1,−1)

2. Find the equation of the circle passing through the given set of three points.

(a) (−1,−1), (6, 6), (7, 5) (b) (3,−4), (5, 10), (−9, 12) (c) (1, 0), (0,−5), (−5,−4)

3. Find the equation of a polynomial curve of degree 3 that passing through the points
(−1, 3), (0, 5), (1, 7), (2, 3).

4. Find the equation of a curve of the given form that passing through the given set of points.

(a) y = a+
b

x
; (1, 5), (2, 4)

(b) y = ax+
b

x
+

c

x2
; (1, 2), (2, 20), (4, 41)

(c) y =
a

x+ b
; (1, 2), (4, 1)

(d) y =
ax+ b

cx+ d
; (0, 2), (1, 1), (3, 5)



3 Vector spaces

3.1 Definition and examples

Consider the Euclidean space Rn, the set of polynomials and the set of continuous functions
on [0, 1]. These sets look very differently. However, they share the same properties that simi-
larly algebraic operations, namely addition and scalar multiplication, are defined on them. In
mathematics, we call a set with these two algebraic structures a vector space.

Definition 3.1.1 (Vector space). A vector space over R consists of a set V and two algebraic
operations addition and scalar multiplication such that

1. u + v = v + u, for any u,v ∈ V

2. (u + v) + w = u + (v + w), for any u,v,w ∈ V

3. There exists 0 ∈ V such that u + 0 = 0 + u = u, for any u ∈ V

4. For any u ∈ V , there exists −u ∈ V such that u + (−u) = 0

5. a(u + v) = au + av, for any a ∈ R and u,v ∈ V

6. (a+ b)u = au + bu, for any a, b ∈ R and u ∈ V

7. a(bu) = (ab)u, for any a, b ∈ R and u ∈ V

8. 1u = u, for any u ∈ V

Example 3.1.2 (Euclidean space). The set

Rn =




x1
x2
...
xn

 : xi ∈ R


with addition defined by 

x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 ,

and scalar multiplication defined by

a


x1
x2
...
xn

 =


ax1
ax2

...
axn


is a vector space which is called the Euclidean space of dimension n.

Example 3.1.3 (Matrix space). The set of all m× n matrices

Mm×n = {A : A is an m× n matrix.}

with matrix addition and scaler multiplication is a vector space.
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Example 3.1.4 (Space of polynomials over R). The set of all polynomials

Pn = {a0 + a1x+ · · ·+ an−1x
n−1 : a0, a1, · · · , an−1 ∈ R.}

of degree less than n over R with addition

(a0 + a1x+ · · ·+ an−1x
n−1) + (b0 + b1x+ · · ·+ bn−1x

n−1)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an−1 + bn−1)x
n−1

and scalar multiplication

a(a0 + a1x+ · · ·+ an−1x
n−1) = aa0 + aa1x+ · · ·+ aan−1x

n−1

is a vector space.

Example 3.1.5 (Space of continuous functions). The set of all continuous functions

C[a, b] = {f : f is a continuous function on [a, b]}

on [a, b] with addition and scalar multiplication defined by

(f + g)(x) = f(x) + g(x)

(af)(x) = a(f(x))

is a vector space.

3.2 Subspaces

Definition 3.2.1. Let W be a nonempty subset of the vector space V . Then W is a subspace
of V if W itself is a vector space with the operations of addition and scalar multiplication defined
in V .

Theorem 3.2.2. A nonempty subset W of a vector space V is a subspace of V if and only if it
satisfies the following two conditions.

1. If u and v are vectors in W , then u + v is also in W .

2. If u is in W and c is a scalar, then cu is also in W .

Example 3.2.3. In the following examples, W is a vector subspace of V :

1. V is any vector space; W = V or {0}

2. V = Rn; W = {(x1, x2, · · · , xn)T ∈ V : a1x1 +a2x2 + · · ·+anxn = 0}, where a1, a2, · · · , an
are fixed real numbers.

3. V = M2×2; W = {A = [aij ] ∈ V : a11 + a22 = 0}.

4. V is the set C[a, b] of all continuous functions on [a, b]; W = {f(x) ∈ V : f(a) = f(b) = 0}.

5. V is the set Pn of all polynomials of degree less than n; W = {p(x) ∈ V : p(0) = 0}.

6. V is the set Pn of all polynomials of degree less than n; W = {p(x) ∈ V : p′(0) = 0}.

Example 3.2.4. In the following examples, W is not a vector subspace of V :
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1. V = R2; W = {(x1, x2)T ∈ V : x1 = 1}

2. V = Rn; W = {(x1, x2, · · · , xn)T ∈ V : x1x2 = 0}

3. V = M2×2; W = {A ∈ V : det(A) = 0}

Example 3.2.5. Let A ∈Mm×n, then the solution set of the homogeneous linear system

Ax = 0

is a subspace of Rn. This subspace is called the solution space of the system.

Proposition 3.2.6. Let U and W be two subspaces of a vector space V , then

1. U ∩W = {x ∈ V : x ∈ U and x ∈W} is subspace of V .

2. U +W = {u + w ∈ V : u ∈ U and w ∈W} is subspace of V .

3. U ∪W = {x ∈ V : x ∈ U or x ∈W} is a subspace of V if and only if U ⊂W or W ⊂ U .

Exercise 3.2

1. Determine whether the given subset W of R3 is a vector subspace of R3.

(a) W = {(x1, x2, x3) ∈ R3 : x2 = 0}
(b) W = {(x1, x2, x3) ∈ R3 : x3 = 1}
(c) W = {(x1, x2, x3) ∈ R3 : x1x2 = 0}

(d) W = {(x1, x2, x3) ∈ R3 : x1 = 2x2}
(e) W = {(x1, x2, x3) ∈ R3 : x1 + x2 = x3}
(f) W = {(x1, x2, x3) ∈ R3 : x2 + x3 = 1}

2. Determine whether the given subset W of the set P3 of polynomials of degree less than 3
is a vector subspace of P3.

(a) W = {p(x) ∈ P3 : p(0) = 0}
(b) W = {p(x) ∈ P3 : p(1) = 0}
(c) W = {p(x) ∈ P3 : p(1) = 1}

(d) W = {p(x) ∈ P3 : p′(0) = 0}
(e) W = {p(x) ∈ P3 : p′(0) = p(0)}
(f) W = {p(x) ∈ P3 : p(0) = 2p(1)}

3. Determine whether the given subset W of the set M2×2 of 3×3 matrics is a vector subspace
of M3×3.

(a) W =

{(
a b
c d

)
∈M2×2 : a+ d = 0

}
(b) W =

{(
a b
c d

)
∈M2×2 : ad = 1

}
(c) W = {A ∈M3×3 : det(A) = 1}
(d) W = {A ∈M3×3 : AT = −A}

3.3 Linear independence of vectors

Definition 3.3.1. Let v1,v2, · · · ,vk ∈ V . A linear combination of v1,v2, · · · ,vk is a vector
in V of the form

c1v1 + c2v2 + · · ·+ ckvk, c1, c2, · · · , cn ∈ R.

The span of v1,v2, · · · ,vk is the set of all linear combination of v1,v2, · · · ,vk and is denoted
by span{v1,v2, · · · ,vk}. If W is a subspace of V and span{v1,v2, · · · ,vk} = W , then we say
that v1,v2, · · · ,vk is a spanning set of W or v1,v2, · · · ,vk span the subspace W .



Vector spaces 47

Theorem 3.3.2. Let v1,v2, · · · ,vk ∈ V . Then

span{v1,v2, · · · ,vk}

is a subspace of V .

Example 3.3.3. Let V = R3.

1. If v1 = (1, 0, 0)T and v2 = (0, 1, 0)T , then span{v1,v2} = {(α, β, 0)T : α, β ∈ R}.

2. If v1 = (1, 0, 0)T , v2 = (0, 1, 0)T and v3 = (0, 0, 1)T , then span{v1,v2,v3} = V .

3. If v1 = (2, 0, 1)T and v2 = (0, 1,−3)T , then span{v1,v2} = {(2α, β, α− 3β)T : α, β ∈ R}.

4. If v1 = (1,−1, 0)T , v2 = (0, 1,−1)T and v3 = (−1, 0, 1)T , then
span{v1,v2,v3} = {(x1, x2, x3)T : x1 + x2 + x3 = 0}.

Example 3.3.4. Let V = P3 be the set of all polynomial of degree less than 3.

1. If v1 = x and v2 = x2, then span{v1,v2} = {p(x) ∈ V : p(0) = 0}.

2. If v1 = 1, v2 = 3x− 2 and v3 = 2x+ 1, then span{v1,v2,v3} = span{v1,v2} = P2.

3. If v1 = 1−x2, v2 = x+2 and v3 = x2, then 1 = v1+v3, x = −2v1+v2−2v3 and x2 = v3.
Thus span{v1,v2,v3} contains span{1, x, x2} = P3. Therefore span{v1,v2,v3} = P3.

Example 3.3.5. Let w = (2,−6, 3)T ∈ R3, v1 = (1,−2,−1)T and v2 = (3,−5, 4)T . Determine
whether w ∈ span{v1,v2}.

Solution: Write

c1

 1
−2
−1

+ c2

 3
−5
4

 =

 2
−6
3

 ,

that is  1 3
−2 −5
−1 4

( c1
c2

)
=

 2
−6
3

 .

The augmented matrix  1 3 2
−2 −5 −6
−1 4 3


can be reduced by elementary row operations to row echelon form 1 3 2

0 1 −2
0 0 19

 .

Since the system is inconsistent, we conclude that w is not a linear combination of v1 and v2.�

Example 3.3.6. Let w = (−7, 7, 11)T ∈ R3, v1 = (1, 2, 1)T , v2 = (−4,−1, 2)T and v3 =
(−3, 1, 3)T . Express w as a linear combination of v1, v2 and v3.
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Solution: Write

c1

 1
2
1

+ c2

 −4
−1
2

+ c3

 −3
1
3

 =

 −7
7
11

 ,

that is  1 −4 −3
2 −1 1
1 2 3

 c1
c2
c3

 =

 −7
7
11

 .

The augmented matrix  1 −4 −3 −7
2 −1 1 7
1 2 3 11


has reduced row echelon form  1 0 1 5

0 1 1 3
0 0 0 0

 .

The system has more than one solution. For example we can write

w = 5v1 + 3v2,

or
w = 3v1 + v2 + 2v3.

�

Example 3.3.7. Let v1 = (1,−1, 0)T , v2 = (0, 1,−1)T and v3 = (−1, 0, 1)T . Observe that

1. One of the vectors is a linear combination of the other. For example

v3 = −v1 − v2.

2. The space span{v1,v2,v3} has a smaller spanning set. For example

span{v1,v2} = span{v1,v2,v3}.

3. There exists numbers c1, c2, c3 ∈ R, not all zero, such that c1v1 + c2v2 + c3v3 = 0. For
example

v1 + v2 + v3 = 0.

Definition 3.3.8. The vectors v1,v2, · · · ,vk in a vector space V are said be be linearly inde-
pendent if the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

has only the trivial solution c1 = c2 = · · · = ck = 0. The vectors v1,v2, · · · ,vk are said be be
linearly dependent if they are not linearly independent.

Theorem 3.3.9. Let V be a vector space and v1,v2, · · · ,vk ∈ V . Then the following statements
are equivalent.

1. The vectors v1,v2, · · · ,vk are linearly independent.

2. None of the vectors is a linear combination of the other vectors.
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3. There does not exist a smaller spanning set of span{v1,v2, · · · ,vk}.

4. Every vector in span{v1,v2, · · · ,vk} can be expressed in only one way as a linear combi-
nation of v1,v2, · · · ,vk.

Example 3.3.10. The standard unit vectors

e1 = (1, 0, 0, · · · , 0)T

e2 = (0, 1, 0, · · · , 0)T

...

en = (0, 0, 0, · · · , 1)T

are linearly independent in Rn.

Example 3.3.11. Let v1 = (1, 2, 2, 1)T , v2 = (2, 3, 4, 1)T , v3 = (3, 8, 7, 5)T be vectors in R4.
Write the equation c1v1 + c2v2 + c3v3 = 0 as the system

c1 + 2c2 + 3c3 = 0
2c1 + 3c2 + 8c3 = 0
2c1 + 4c2 + 7c3 = 0
c1 + c2 + 5c3 = 0

.

The augmented matrix of the system reduces to the row echelon form
1 2 3 0
0 1 −2 0
0 0 1 0
0 0 0 0

 .

Thus the only solution is c1 = c2 = c3 = 0. Therefore v1,v2,v3 are linearly independent.

Example 3.3.12. Let v1 = (2, 1, 3)T , v2 = (5,−2, 4)T , v3 = (3, 8,−6)T and v4 = (2, 7,−4)T

be vectors in R3. Write the equation c1v1 + c2v2 + c3v3 + c4v4 = 0 as the system
c1 + 5c2 + 3c3 + 2c4 = 0
c1 − 2c2 + 8c3 + 7c4 = 0
3c1 + 4c2 − 6c3 − 4c4 = 0

.

Since there are more unknowns than equations and the system is homogeneous, it has a nontrivial
solution. Therefore v1,v2,v3,v4 are linearly dependent.

Theorem 3.3.13.

1. Two nonzero vectors v1,v2 ∈ V are linearly dependent if and only if they are proportional,
i.e., there exists c ∈ R such that v2 = cv1.

2. If one of the vectors of v1,v2, · · · ,vk ∈ V is zero, then v1,v2, · · · ,vk are linearly depen-
dent.

3. Let v1,v2, · · · ,vn be n vectors in Rn and

A = [v1 v2 · · · vn]

be the n × n matrix having them as its column vectors. Then v1,v2, · · · ,vn are linearly
independent if and only if det(A) 6= 0.
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4. Let v1,v2, · · · ,vk be k vectors in Rn, with k > n, then v1,v2, · · · ,vk are linearly depen-
dent.

Proof.

1. Obvious.

2. We may assume v1 = 0. Then

1 · v1 + 0 · v2 + · · ·+ 0 · vk = 0.

Therefore v1,v2, · · · ,vk are linearly dependent.

3. The vectors v1,v2, · · · ,vn are linearly independent
⇔ The system Ax = 0 has only trivial solution.
⇔ A is nonsingular
⇔ det(A) 6= 0.

4. Since the system
c1v1 + c2v2 + · · ·+ ckvk = 0

has more unknowns than the number of equations, it must have nontrivial solution for
c1, c2, · · · , ck. Therefore v1,v2, · · · ,vn are linearly dependent.

Exercise 3.3

1. Determine whether the given set of vectors are linearly independent in R3.

(a) v1 = (0, 2,−1),v2 = (2,−1, 3)

(b) v1 = (1, 0, 1),v2 = (−2, 0,−2)

(c) v1 = (1, 0, 0),v2 = (1, 1, 0),v3 = (1, 1, 1)

(d) v1 = (1,−1, 0),v2 = (0, 1,−1),v3 = (−1, 0, 1)

(e) v1 = (3,−1,−2),v2 = (2, 0,−1),v3 = (1,−3,−2)

(f) v1 = (1,−2, 2),v2 = (3, 0, 1),v3 = (1,−1, 2)

2. Suppose v1,v2,v3 are linearly independent vectors in R3. Determine whether the given
set u1,u2,u3 of vectors are linearly independent.

(a) u1 = v1,u2 = 2v2,u3 = 3v3

(b) u1 = v1,u2 = v1 + v2,u3 = v1 + v2 + v3

(c) u1 = v1 + 2v2,u2 = 2v1 − 4v2,u3 = −v1 + 3v2

(d) u1 = 2v1 − v2,u2 = 2v2 − v3,u3 = 2v1 + v2 − v3

3. Prove that if v1,v2,v3 are linearly independent vectors, then v1 + v2,v2 + v3,v1 + v3 are
linearly independent vectors.

4. Prove that if a set of vectors contains the zero vector, then it is linearly independent.

5. Prove that if S, T are two sets of vectors with S ⊂ T and T is linearly independent, then
S is linearly independent.

6. Let V be a vector space and W be a vector subspace of V . Suppose v1,v2, · · · ,vk are
linearly independent vectors in W and v be a vector in V which does not lie in W . Prove
that v1,v2, · · · ,vk,v are linearly independent.
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3.4 Bases and dimension for vector spaces

Definition 3.4.1. A set S of vectors in a vector space V is called a basis for V if

1. S is linearly independent, and

2. S spans V .

Example 3.4.2.

1. The vectors

e1 = (1, 0, 0, · · · , 0)T

e2 = (0, 1, 0, · · · , 0)T

...

en = (0, 0, 0, · · · , 1)T

constitute a basis for Rn and is called the standard basis for Rn.

2. The vectors v1 = (1, 1, 1)T , v2 = (0, 1, 1)T and v3 = (2, 0, 1)T constitute a basis for R3.

Theorem 3.4.3. If V = span{v1,v2, · · · ,vn}, then any collection of m vectors in V , with
m > n, are linearly dependent.

Proof. Let u1,u2, · · · ,um ∈ V , m > n. Then we can write

u1 = a11v1 + a12v2 + · · ·+ a1nvn

u2 = a21v1 + a22v2 + · · ·+ a2nvn
...

um = am1v1 + am2v2 + · · ·+ amnvn.

We have

c1u1 + c2u2 + · · ·+ cmum =

m∑
i=1

ci n∑
j=1

aijvj


=

n∑
j=1

(
m∑
i=1

ciaij

)
vj

Consider the 
a11c1 + a21c2 + · · · + am1cm = 0
a12c1 + a22c2 + · · · + am2cm = 0

...
...

. . .
... =

...
a1nc1 + a2nc2 + · · · + amncm = 0

where c1, c2, · · · , cm are variables. Since the number of unknowns is more than the number of
equations, there exists nontrivial solution for c1, c2, · · · , cm and

m∑
i=1

ciaij = 0, for j = 1, 2, · · · , n.

This implies that c1u1 + c2u2 + · · · + cmum = 0 and therefore u1,u2, · · · ,um are linearly
dependent.
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Theorem 3.4.4. Any two finite bases for a vector space consist of the same number of vectors.

Proof. Let {u1,u2, · · · ,um} and {v1,v2, · · · ,vn} be two bases for V . Since V = span{v1,v2, · · · ,vn}
and {u1,u2, · · · ,um} are linearly independent, we have m ≤ n by Theorem 3.4.3. Similarly, we
have n ≤ m.

The above theorem enables us to define the dimension of a vector space.

Definition 3.4.5. The dimension of a vector space V is the number of vectors of a finite basis
of V . We say that V is of dimension n (or V is an n-dimensional vector space) if V has a
basis consisting of n vectors. We say that V is an infinite dimensional vector space if it does
not have a finite basis.

Example 3.4.6.

1. The Euclidean space Rn is of dimension n.

2. The polynomials 1, x, x2, · · · , xn−1 constitute a basis of the set for the set Pn of polynomials
of degree less than n. Thus Pn is of dimension n.

3. The set of all m× n matrices Mm×n is of dimension mn.

4. The set of all continuous functions C[a, b] is an infinite dimensional vector space.

Theorem 3.4.7. Let V be an n-dimension vector space and let S = {v1,v2, · · · ,vn} be a subset
of V consists of n vectors. Then the following statements for S are equivalent.

1. S is a basis for V .

2. S spans V .

3. S is linearly independent.

Proof. We need to prove that S is linearly independent if and only if span(S) = V .
Suppose S is linearly independent and span(S) 6= V . Then there exists v ∈ V such that
v 6∈ span(S). Since S ∪ {v} contains n + 1 vectors, it is linearly dependent by Theorem 3.4.3.
Thus there exists c1, c2, · · · , cn, cn+1, not all zero, such that

c1v1 + c2v2 + · · ·+ cnvn + cn+1v = 0.

Now cn+1 = 0 since v 6∈ span(S). This contradicts to the assumption that {v1,v2, · · · ,vn} are
linearly independent.
Suppose span(S) = V and S is linearly dependent. Then by Theorem 3.3.9, there exists a proper
subset S′ ⊂ S consists of k vectors, k < n, such that span(S′) = V . By Theorem 3.4.3, any set
of more than k vectors are linearly dependent. This contradicts to that V is of dimension n.

Theorem 3.4.8. Let V be an n-dimension vector space and let S be a subset of V . Then

1. If S is linearly independent, then S is contained in a basis for V .

2. If S spans V , then S contains a basis for V .
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Proof. 1. Suppose S is linearly independent. If span(S) = V , then S is a basis for V . If
span(S) 6= V , then there exists v1 ∈ V such that v1 6∈ span(S). Now S ∪ {v1} is linearly
independent. Similarly if span(S ∪ {v1}) 6= V , there exists v2 ∈ V such that S ∪ {v1,v2}
is linearly independent. This process may be continued until S ∪{v1,v2, · · · ,vk} contains
n vectors. Then S ∪ {v1,v2, · · · ,vk} constitutes a basis for V .

2. Suppose S spans V . If S is linearly independent, then S is a basis for V . If S is linearly
dependent, then there exists v1 ∈ S which is a linear combination of the remaining vectors
in S. After removing v1 from S, the remaining vectors will still span V . This process may
be continued until we obtain a set of linearly independent vectors consisting of n vectors
which constitutes a basis for V .

Theorem 3.4.9. Let A be an m× n matrix. The set of solutions to the system

Ax = 0

form a vector subspace of Rn. The dimension of the solution space equals to the number of free
variables.

Example 3.4.10. Find a basis for the solution space of the system
3x1 + 6x2 − x3 − 5x4 + 5x5 = 0
2x1 + 4x2 − x3 − 3x4 + 2x5 = 0
3x1 + 6x2 − 2x3 − 4x4 + x5 = 0.

Solution: The coefficient matrix A reduces to the row echelon form 1 2 0 −2 3
0 0 1 −1 4
0 0 0 0 0

 .

The leading variables are x1, x3. The free variables are x2, x4, x5. The set {(−2, 1, 0, 0, 0)T ,
(2, 0, 1, 1, 0)T , (−3, 0,−4, 0, 1)T } constitutes a basis for the solution space of the system. �

Exercise 3.4

1. Find a basis for the plane in R3 with the given equation.

(a) x+ 2y − 4z = 0 (b) z = 3x− y (c) 3x+ y = 0

2. Find a basis for the solution space of the given homogeneous linear system.

(a)

{
x1 − 2x2 + 3x3 = 0
2x1 − 3x2 − x3 = 0

(b)

{
x1 + 3x2 + 4x3 = 0
3x1 + 8x2 + 7x3 = 0

(c)

{
x1 − 3x2 + 2x3 − 4x4 = 0
2x1 − 5x2 + 7x3 − 3x4 = 0

(d)


x1 − 3x2 − 9x3 − 5x4 = 0
2x1 + x2 − 4x3 + 11x4 = 0
x1 + 3x2 + 3x3 + 13x4 = 0
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(e)


x1 + 5x2 + 13x3 + 14x4 = 0
2x1 + 5x2 + 11x3 + 12x4 = 0
2x1 + 7x2 + 17x3 + 19x4 = 0

(f)


x1 − 3x2 − 10x3 + 5x4 = 0
x1 + 4x2 + 11x3 − 2x4 = 0
x1 + 3x2 + 8x3 − x4 = 0

3.5 Row and column spaces

Definition 3.5.1. Let A be an m× n matrix.

1. The null space Null(A) of A is the solution space to Ax = 0. In other words, Null(A) =
{x ∈ R : Ax = 0.}.

2. The row space Row(A) of A is the vector subspace of Rn spanned by the m row vectors
of A.

3. The column space Col(A) of A is the vector subspace of Rm spanned by the n column
vectors of A.

It is easy to write down a basis for each of the above spaces for row echelon form.

Theorem 3.5.2. Let E be a row echelon form. Then

1. The set of vectors obtained by setting one free variable equal to 1 and other free variables
to be zero constitutes a basis for Null(E).

2. The set of non-zero rows constitutes a basis for Row(E).

3. The set of columns associated with lead variables constitutes a basis for Col(E)

Example 3.5.3. Let

A =


1 −3 0 0 3
0 0 1 0 −2
0 0 0 1 7
0 0 0 0 0

 .

Find a basis for Null(A), Row(A) and Col(A).

Solution:

1. The set {(3, 1, 0, 0, 0)T , (−3, 0, 2,−7, 1)T } constitutes a basis for Null(A).

2. The set {(1,−3, 0, 0, 3), (0, 0, 1, 0,−2), (0, 0, 0, 1, 7)} constitutes a basis for Row(A).

3. The set {(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T } constitutes a basis for Col(A).

�

To find bases for the null space, row space and column space of a general matrix, we may find
a row echelon form of the matrix and use the following theorem.

Theorem 3.5.4. Let E be the row echelon form of A. Then
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1. Null(A) = Null(E).

2. Row(A) = Row(E).

3. The column vectors of A associated with the column containing the leading entries of E
constitute a basis for Col(A).

Example 3.5.5. Find a basis for the null space Null(A), a basis for the row space Row(A) and
a basis for the column space Col(A) where

A =


1 −2 3 2 1
2 −4 8 3 10
3 −6 10 6 5
2 −4 7 4 4

 .

Solution: The reduced row echelon form of A is
1 −2 0 0 3
0 0 1 0 2
0 0 0 1 −4
0 0 0 0 0

 .

Thus

1. the set {(2, 1, 0, 0, 0)T , (−3, 0,−2, 4, 1)T } constitutes a basis for Null(A).

2. the set {(1,−2, 0, 0, 3), (0, 0, 1, 0, 2), (0, 0, 0, 1,−4)} constitutes a basis for Row(A).

3. the 1st, 3rd and 4th columns contain leading entries. Therefore the set {(1, 2, 3, 2)T ,
(3, 8, 10, 7)T , (2, 3, 6, 4)T } constitutes a basis for Col(A).

�

Definition 3.5.6. Let A be an m× n matrix. The dimension of

1. the solution space of Ax = 0 is called the nullity of A.

2. the row space is called the row rank of A.

3. the column space is called the column rank of A.

To find the above three quantities of a matrix, we have the following theorem which is a direct
consequence of Theorem 3.5.2 and Theorem 3.5.4.

Theorem 3.5.7. Let A be a matrix.

1. The nullity of A is equal to the number of free variables.

2. The row rank of A is equal to the number of lead variables.

3. The column rank of A is equal to the number of lead variables.

Now we can state two important theorems for general matrices.

Theorem 3.5.8. Let A be an m × n matrix. Then the row rank of A is equal to the column
rank of A.
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Proof. Both of them are equal to the number of leading entries of the reduced row echelon form
of A.

The common value of the row and column rank of the matrix A is called the rank of A and
is denoted by rank(A). The nullity of A is denoted by nullity(A). The rank and nullity of a
matrix is related in the following way.

Theorem 3.5.9 (Rank-Nullity Theorem). Let A be an m× n matrix. Then

rank(A) + nullity(A) = n

where rank(A) and nullity(A) are the rank and nullity of A respectively.

Proof. The nullity of A is equal to the number of free variables of the reduced row echelon form
of A. Now the left hand side is the sum of the number of leading variables and free variables
and is of course equal to n.

We end this section by proving a theorem which will be used in Section 5.4.

Theorem 3.5.10. Let A and B be two matrices such that AB is defined. Then

nullity(B) ≤ nullity(AB) ≤ nullity(A) + nullity(B)

Proof. It is obvious that Null(B) ⊂ Null(AB). Thus we have nullity(B) ≤ nullity(AB).
Observe that Null(AB) = {v : Bv ∈ Null(A)}. Let u1,u2, · · · ,uk be vectors such that
{Bu1,Bu2, · · · ,Buk} is a basis for Null(A)∩Col(B) and {v1,v2, · · · ,vl} be a basis for Null(B).
We are going to prove that u1,u2, · · · ,uk,v1,v2, · · · ,vl constitute a basis for Null(AB). First
we prove that they are linearly independent. Suppose

c1u1 + c2u2 + · · ·+ ckuk + d1v1 + d2v2 + · · ·+ dlvl = 0

Multiplying B from the left, we have

c1Bu1 + c2Bu2 + · · ·+ ckBuk + d1Bv1 + d2Bv2 + · · ·+ dlBvl = 0

and since v1,v2, · · · ,vl ∈ Null(B), we obtain

c1Bu1 + c2Bu2 + · · ·+ ckBuk = 0

This implies that c1 = c2 = · · · = ck = 0 since Bu1,Bu2, · · · ,Buk are linearly independent.
Thus

d1v1 + d2v2 + · · ·+ dlvl = 0

and consequently d1 = d2 = · · · = dl = 0 since v1,v2, · · · ,vl are linearly independent. Hence
u1,u2, · · · ,uk,v1,v2, · · · ,vl are linearly independent.

Second we prove that u1,u2, · · · ,uk,v1,v2, · · · ,vl span Null(AB). For any v ∈ Null(AB), we
have Bv ∈ Null(A) ∩ Col(B). Since Bu1,Bu2, · · · ,Buk span Null(A) ∩ Col(B), there exists
c1, c2, · · · , ck such that

Bv = c1Bu1 + c2Bu2 + · · ·+ ckBuk

It follows that
v − (c1u1 + c2u2 + · · ·+ ckuk) ∈ Null(B)
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and since v1,v2, · · · ,vl span Null(B), there exists d1, d2, · · · , dl such that

v − (c1u1 + c2u2 + · · ·+ ckuk) = d1v1 + v2 + · · ·+ dlvl

Thus
v = c1u1 + c2u2 + · · ·+ ckuk + d1v1 + d2v2 + · · ·+ dlvl

This implies that u1,u2, · · · ,uk,v1,v2, · · · ,vl span Null(AB). Hence we completed the proof
that u1,u2, · · · ,uk,v1,v2, · · · ,vl constitute a basis for Null(AB).

Observe that k = dim(Null(A) ∩ Col(B)) ≤ nullity(A) and l = nullity(B). Therefore we have

nullity(AB) = k + l ≤ nullity(A) + nullity(B)

Exercise 3.5

1. Find a basis for the null space , a basis for the row space and a basis for the column space
for the given matrices.

(a)

 1 2 3
1 5 −9
2 5 2


(b)

 1 1 1 1
3 1 −3 4
2 5 11 12


(c)

 3 −6 1 3 4
1 −2 0 1 2
1 −2 2 0 3



(d)


1 1 −1 7
1 4 5 16
1 3 3 13
2 5 4 23



(e)


1 −2 −3 −5
1 4 9 2
1 3 7 1
2 2 6 −3



(f)


1 1 3 3 1
2 3 7 8 2
2 3 7 8 3
3 1 7 5 4



(g)


1 1 3 0 3
−1 0 −2 1 −1
2 3 7 1 8
−2 4 0 7 6


2. Find a basis for the subspace spanned by the given set of vectors.

(a) v1 = (1, 3,−2, 4),v2 = (2,−1, 3, 1),v3 = (5, 1, 4, 6)

(b) v1 = (1,−1, 2, 3),v2 = (2, 3, 4, 1),v3 = (1, 1, 2, 1),v4 = (4, 1, 8, 7)

(c) v1 = (3, 2, 2, 2),v2 = (2, 1, 2, 1),v3 = (4, 3, 2, 3),v4 = (1, 2,−2, 4)

(d) v1 = (1,−2, 1, 1, 2),v2 = (−1, 3, 0, 2,−2),v3 = (0, 1, 1, 3, 4),v4 = (1, 2, 5, 13, 5)

(e) v1 = (1,−3, 4,−2, 5),v2 = (2,−6, 9,−1, 8),v3 = (2,−6, 9,−1, 9),v4 = (−1, 3,−4, 2,−5)

3. Let A be an m× n matrix and B be an n× k matrix. Let rA = rank(A), rB = rank(B)
and rAB be the rank of A, B and AB respectively. Prove that

rA + rB − n ≤ rAB ≤ min(rA, rB)

where min(rA, rB) denotes the minimum of rA and rB.
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3.6 Orthogonal vectors in Rn

Definition 3.6.1. An inner product on a vector space V is a function that associates with
each pair of vectors u and v a scalar 〈u,v〉 such that, for any scalar c and u,v,w ∈ V ,

1. 〈u,v〉 = 〈v,u〉

2. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉

3. 〈cu,v〉 = c〈u,v〉

4. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 if and only if u = 0

An inner product space is a vector space V together with an inner product defined on V .

Example 3.6.2.

1. (Dot product) Let u = (u1, · · · , un)T and v = (v1, · · · , vn)T be vectors in Rn. The dot
product defined by

u · v = uTv = u1v1 + u2v2 + · · ·+ unvn

is an inner product on Rn.

2. Let Pn be the set of all polynomials of degree less than n. Let x1, x2, · · · , xn be n distinct
real numbers and p(x), q(x) ∈ Pn. Then

〈p(x), q(x)〉 = p(x1)q(x1) + p(x2)q(x2) + · · ·+ p(xn)q(xn)

defines an inner product on Pn.

3. Let C[a, b] be the set of all continuous function on [a, b] and f(x), g(x) ∈ C[a, b]. Then

〈f(x), g(x)〉 =

∫ b

a
f(x)g(x)dx

defines an inner product on C[a, b].

Definition 3.6.3. Let V be an inner product space and u ∈ V . The length, or magnitude,
of u is defined as

|u| =
√
〈u,u〉.

The distance between two vectors u and v in V is defined as

|u− v|.

Theorem 3.6.4 (Cauchy-Schwarz inequality). Let V be an inner product space and u,v ∈ V .
Then

|〈u,v〉| ≤ |u||v|

and equality holds if and only if u = 0 or v = tu for some scalar t.

Proof. When u = 0, the inequality is satisfied trivially. If u 6= 0, then for any real number t,
we have

|tu− v|2 ≥ 0

〈(tu− v), (tu− v)〉 ≥ 0

t2〈u,u〉 − 2t〈u,v〉+ 〈v,v〉 ≥ 0
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Thus the quadratic function t2〈u,u〉 − 2t〈u,v〉 + 〈v,v〉 is always non-negative. Hence its dis-
criminant

4(〈u,v〉)2 − 4(〈u,u〉)(〈v,v〉)

is non-positive. Therefore

(〈u,v〉)2 ≤ (〈u,u〉)(〈v,v〉)
|〈u,v〉|2 ≤ |u|2|v|2

|〈u,v〉| ≤ |u||v|

and equality holds if and only if u = 0 or v = tu for some t.

Let u and v be nonzero vectors in an inner product space, by Cauchy-Schwarz inequality we
have

−1 ≤ 〈u,v〉
|u||v|

≤ 1.

This enables us to make the following definition.

Definition 3.6.5. Let u,v be nonzero vectors in an inner product space. Then the angle between
u and v is the unique angle θ between 0 and π inclusively such that

cos θ =
〈u,v〉
|u||v|

.

Definition 3.6.6. We say that two vectors u and v are orthogonal in an inner product space
V if 〈u,v〉 = 0.

Theorem 3.6.7 (Triangle inequality). Let u and v be vectors in an inner product space. Then

|u + v| ≤ |u|+ |v|.

Proof. We apply Cauchy-Schwarz inequality to find that

|u + v|2 = 〈u + v,u + v〉
= 〈u,u〉+ 2〈u,v〉+ 〈v,v〉
≤ |u|2 + 2|u||v|+ |v|2

= (|u|+ |v|)2.

Theorem 3.6.8. Let v1,v2, · · · ,vk be mutually orthogonal nonzero vectors in an inner product
space V . Then they are linearly independent.

Proof. Suppose
c1v1 + c2v2 + · · ·+ ckvk = 0.

For each 1 ≤ i ≤ k, we take the inner product of each side with vi, we have

ci〈vi,vi〉 = 0.

Since vi is a nonzero vector, we have ci = 0. Thus c1 = c2 = · · · = ck = 0 and therefore
v1,v2, · · · ,vk are linearly independent.
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Definition 3.6.9 (Orthogonal complement of a subspace). Let W be a vector subspace of an
inner product space V . We say that a vector u ∈ V is orthogonal to W if u is orthogonal to
every vector in W . The orthogonal complement of W in V is

W⊥ = {u ∈ V : 〈u,w〉 = 0, for all w ∈W}.

Theorem 3.6.10 (Properties of orthogonal complements). Let W be a vector subspace of an
inner product space V . Then

1. W⊥ is a vector subspace of V .

2. W⊥ ∩W = {0}

3. If V is finite dimensional, then dim(W ) + dim(W⊥) = dim(V ).

4. W ⊂ (W⊥)⊥. If V is finite dimensional, then (W⊥)⊥ = W .

5. If S spans W , then u ∈W⊥ if and only if u is orthogonal to every vector in S.

Theorem 3.6.11. Let v1,v2, · · · ,vm be (column) vectors in Rn and W = span{v1,v2, · · · ,vm}.
Then

W⊥ = Null(A)

where A is the m× n matrix with row vectors vT1 ,v
T
2 , · · · ,vTm.

Proof. For any x ∈ Rn, we have

x ∈W⊥ ⇔ 〈vi,x〉 = 0 for any i = 1, 2, · · · ,m
⇔ Ax = 0

⇔ x ∈ Null(A).

To find a basis for the orthogonal complementW⊥ of a subspace of the formW = span{v1,v2, · · · ,vm},
we may write down a matrix A using vT1 ,v

T
2 , · · · ,vTm as row vectors and then find a basis for

Null(A).

Example 3.6.12. Let W = span{(1,−3, 5)T }. Find a basis for W⊥.

Solution: Using (1,−3, 5) as row vector, we obtain A = (1,−3, 5) which is in reduced row
echelon form. Thus the vectors (3, 1, 0)T and (−5, 0, 1)T constitute a basis for W⊥ = null(AT ).
�

Example 3.6.13. Let W be the subspace spanned by (1, 2, 1,−3,−3)T and (2, 5, 6,−10,−12)T .
Find a basis for W⊥.

Solution: Using (1, 2, 1,−3,−3) and (2, 5, 6,−10,−12) as row vectors, we obtain

A =

(
1 2 1 −3 −3
2 5 6 −10 −12

)
which has reduced row echelon form(

1 0 −7 5 9
0 1 4 −4 −6

)
.

Thus the vectors (7,−4, 1, 0, 0)T , (−5, 4, 0, 1, 0)T , (−9, 6, 0, 0, 1)T constitute a basis for W⊥. �
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Example 3.6.14. Find a basis for the orthogonal complement of the subspace spanned by
(1, 2,−1, 1)T , (2, 4,−3, 0)T and (1, 2, 1, 5)T .

Solution: Using (1, 2,−1, 1), (2, 4,−3, 0), (1, 2, 1, 5) as row vectors, we obtain

A =

 1 2 −1 1
2 4 −3 0
1 2 1 5


which has reduced row echelon form  1 2 0 3

0 0 1 2
0 0 0 0

 .

Thus the vectors (−2, 1, 0, 0)T and (−3, 0,−2, 1)T constitute a basis for

span{(1, 2,−1, 1)T , (2, 4,−3, 0)T , (1, 2, 1, 5)T }⊥.

�

Exercise 3.6

1. Find a basis for the orthogonal complement of the subspace of the Euclidean space spanned
by given set of vectors.

(a) {(1, 2, 3)}
(b) {(1,−2,−3, 5)}
(c) {(1, 3, 2, 4), (2, 7, 7, 3)}
(d) {(1,−3, 3, 5), (2,−5, 9, 3)}
(e) {(1, 2, 5, 2, 3), (3, 7, 11, 9, 5)}
(f) {(2, 5, 5, 4, 3), (3, 7, 8, 8, 8)}
(g) {(1, 2, 3, 1, 3), (1, 3, 4, 3, 6), (2, 2, 4, 3, 5)}
(h) {(1, 1, 1, 1, 3), (2, 3, 1, 4, 7), (5, 3, 7, 1, 5)}

2. Prove that for any vectors u and v in an inner product space V , we have

(a) |u + v|2 + |u− v|2 = 2|u|2 + 2|v|2

(b) |u + v|2 − |u− v|2 = 4〈u,v〉

3. Let V be an inner product space. Prove that for any vector subspace W ⊂ V , we have
W ∩W⊥ = {0}.

4. Let V be an inner product space. Prove that for any vector subspace W ⊂ V , we have
W ⊂ (W⊥)⊥. (Note that in general (W⊥)⊥ 6= W .)

5. Let V be a vector space and v1,v2, · · · ,vk ∈ V be non-zero vectors in V such that
〈vi,vi〉 = 0 for any i, j = 1, 2, · · · , k with i 6= j. Prove that v1,v2, · · · ,vk are linearly
independent.



4 Second and higher order linear equations

4.1 Second order linear equations

In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a
differential equation of the form

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = g(t)

where p(t) and q(t) are continuous functions. We may let

L[y] = y′′ + p(t)y′ + q(t)y

and write the equation as the form
L[y] = g(t).

The above equation is said to be homogeneous if g(t) = 0 and the equation

L[y] = 0

is called the associated homogeneous equation. First we state two fundamental results of
second order linear ODE.

Theorem 4.1.1 (Existence and uniqueness of solution). Let I be an open interval and to ∈ I.
Let p(t), q(t) and g(t) be continuous functions on I. Then for any real numbers y0 and y′0, the
initial value problem {

y′′ + p(t)y′ + q(t)y = g(t), t ∈ I
y(t0) = y0, y′(t0) = y′0

has a unique solution on I.

The proof of the above theorem needs some hard analysis and is omitted. But the proof of the
following theorem is simple and is left to the readers.

Theorem 4.1.2 (Principle of superposition). If y1 and y2 are two solutions to the homogeneous
equation

L[y] = 0,

then y = c1y1 + c2y2 is also a solution for any constants c1 and c2.

The principle of superposition implies that the solutions of a homogeneous equation form a
vector space. This suggests us finding a basis for the solution space. Let’s recall the definition
of linear independency for functions (See Definition 3.3.8 for linear independency for vectors in
a general vector space).

Definition 4.1.3. Two functions u(t) and v(t) are said to be linearly dependent if there
exists constants c1 and c2, not both zero, such that c1u(t) + c2v(t) = 0 for all t ∈ I. They are
said to be linearly independent if they are not linearly dependent.

Definition 4.1.4 (Fundamental set of solutions). We say that two solutions y1 and y2 form a
fundamental set of solutions of a second order homogeneous linear differential equation if
they are linearly independent.
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Definition 4.1.5 (Wronskian). Let y1 and y2 be two differentiable functions. Then we define
the Wronskian (or Wronskian determinant) of y1, y2 to be the function

W (t) = W (y1, y2)(t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = y1(t)y
′
2(t)− y′1(t)y2(t).

Wronskian is used to determine whether a pair of solutions is linearly independent.

Theorem 4.1.6. Let u(t) and v(t) be two differentiable functions on open interval I. If
W (u, v)(t0) 6= 0 for some t0 ∈ I, then u and v are linearly independent.

Proof. Suppose c1u(t) + c2v(t) = 0 for all t ∈ I where c1, c2 are constants. Then we have{
c1u(t0) + c2v(t0) = 0,
c1u
′(t0) + c2v

′(t0) = 0.

In other words, (
u(t0) v(t0)
u′(t0) v′(t0)

)(
c1
c2

)
=

(
0
0

)
.

Now the matrix (
u(t0) v(t0)
u′(t0) v′(t0

)
is non-singular since its determinant W (u, v)(t0) is non-zero by the assumption. This implies
by Theorem 2.4.8 that c1 = c2 = 0. Therefore u(t) and v(t) are linearly independent.

Remark: The converse of the above theorem is false. For example take u(t) = t3, v(t) = |t|3.
Then W (u, v)(t) = 0 for any t ∈ R but u(t), v(t) are not linearly independent.

Example 4.1.7. The functions y1(t) = et and y2(t) = e−2t form a fundamental set of solutions
of

y′′ + y′ − 2y = 0

since W (y1, y2) = et(−2e−2t)− et(e−2t) = −3e−t is not identically zero.

Example 4.1.8. The functions y1(t) = et and y2(t) = tet form a fundamental set of solutions
of

y′′ − 2y′ + y = 0

since W (y1, y2) = et(tet + et)− et(tet) = e2t is not identically zero.

Example 4.1.9. The functions y1(t) = 3, y2(t) = cos2 t and y3(t) = −2 sin2 t are linearly
dependent since

2(3) + (−6) cos2 t+ 3(−2 sin2 t) = 0.

One may justify that the Wronskian

W (y1, y2, y3) =

∣∣∣∣∣∣
y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣∣∣∣∣∣ = 0.

Example 4.1.10. Show that y1(t) = t1/2 and y2(t) = t−1 form a fundamental set of solutions
of

2t2y′′ + 3ty′ − y = 0, t > 0.
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Solution: It is easy to check that y1 and y2 are solutions to the equation. Now

W (y1, y2)(t) =

∣∣∣∣ t1/2 t−1

1
2 t
−1/2 −t−2

∣∣∣∣ = −3

2
t−3/2

is not identically zero. We conclude that y1 and y2 form a fundamental set of solutions of the
equation. �

Theorem 4.1.11 (Abel’s Theorem). If y1 and y2 are solutions to the second order homogeneous
equation

L[y] = y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on an open interval I, then

W (y1, y2)(t) = c exp

(
−
∫
p(t)dt

)
,

where c is a constant that depends on y1 and y2. Furthermore, W (y1, y2)(t) is either identically
zero on I or never zero on I.

Proof. Since y1 and y2 are solutions, we have{
y′′1 + p(t)y′1 + q(t)y1 = 0
y′′2 + p(t)y′2 + q(t)y2 = 0.

If we multiply the first equation by −y2, multiply the second equation by y1 and add the resulting
equations, we get

(y1y
′′
2 − y′′1y2) + p(t)(y1y

′
2 − y′1y2) = 0

W ′ + p(t)W = 0

which is a first-order linear and separable differential equation with solution

W (t) = c exp

(
−
∫
p(t)dt

)
,

where c is a constant. Since the value of the exponential function is never zero, W (y1, y2)(t) is
either identically zero on I (when c = 0) or never zero on I (when c 6= 0).

Let y1 and y2 be two differentiable functions. In general, we cannot conclude that their Wron-
skian W (t) is not identically zero purely from their linear independency. However, if y1 and y2
are solutions to a second order homogeneous linear differential equation, then W (t0) 6= 0 for
some t0 ∈ I provided y1 and y2 are linearly independent.

Theorem 4.1.12. Suppose y1 and y2 are solutions to the second order homogeneous equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, for t ∈ I

where p(t) and q(t) are continuous on an open interval I. Then y1 and y2 are linearly independent
if and only if W (y1, y2)(t0) 6= 0 for some t0 ∈ I.

Proof. The ‘if’ part follows by Theorem 4.1.6. To prove the ‘only if’ part, suppose W (y1, y2)(t) =
0 for any t ∈ I. Take any t0 ∈ I, we have

W (y1, y2)(t0) =

∣∣∣∣ y1(t0) y2(t0)
y′1(t0) y′2(t0)

∣∣∣∣ = 0.
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Then system of equations {
c1y1(t0) + c2y2(t0) = 0
c1y
′
1(t0) + c2y

′
2(t0) = 0

,

has non-trivial solution for c1, c2. Now the function c1y1 + c2y2 is a solution to the initial value
problem {

y′′ + p(t)y′ + q(t)y = 0, t ∈ I,
y(t0) = 0, y′(t0) = 0.

This initial value problem has a solution y(t) ≡ 0 which is unique by Theorem 4.1.1. Thus
c1y1 + c2y2 is identically zero and therefore y1, y2 are linearly dependent.

Theorem 4.1.13. Let y1 and y2 be solutions to

L[y] = y′′ + p(t)y′ + q(t)y = 0, t ∈ I

where p and q are continuous on an open interval I. Then W (y1, y2)(t0) 6= 0 for some t0 ∈ I
if and only if every solution of the equation is of the form y = c1y1 + c2y2 for some constants
c1, c2.

Proof. Suppose W (y1, y2)(t0) 6= 0 for some t0 ∈ I. Let y = y(t) be a solution of of L[y] = 0 and
write y0 = y(t0), y

′
0 = y′(t0). Since W (t0) 6= 0, there exists constants c1, c2 such that(

y1(t0) y2(t0)
y′1(t0) y′2(t0)

)(
c1
c2

)
=

(
y0
y′0

)
.

Now both y and c1y1 + c2y2 are solution to the initial problem{
y′′ + p(t)y′ + q(t)y =, t ∈ I,
y(t0) = y0, y′(t0) = y′0.

Therefore y = c1y1 + c2y2 by the uniqueness part of Theorem 4.1.1.
Suppose the general solution of L[y] = 0 is y = c1y1 + c2y2. Take any t0 ∈ I. Let u1 and u2 be
solutions of L[y] = 0 with initial values{

u1(t0) = 1
u′1(t0) = 0

and

{
u2(t0) = 0
u′2(t0) = 1

.

The existence of u1 and u2 is guaranteed by Theorem 4.1.1. Thus there exists constants
a11, a12, a21, a22 such that {

u1 = a11y1 + a21y2
u2 = a12y1 + a22y2

.

In particular, we have {
1 = u1(t0) = a11y1(t0) + a21y2(t0)
0 = u2(t0) = a12y1(t0) + a22y2(t0)

and {
0 = u′1(t0) = a11y

′
1(t0) + a21y

′
2(t0)

1 = u′2(t0) = a12y
′
1(t0) + a22y

′
2(t0)

.

In other words, (
1 0
0 1

)
=

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)(
a11 a12
a21 a22

)
.

Therefore the matrix (
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)
is non-singular and its determinant W (y1, y2)(t0) is non-zero.



Second and higher order linear equations 66

Combining Abel’s theorem (Theorem 4.1.11), Theorem 4.1.12, Theorem 4.1.13 and the definition
of basis for vector space, we obtain the following theorem.

Theorem 4.1.14. The solution space of the second order homogeneous equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, for t ∈ I,

where p(t) and q(t) are continuous on open interval I, is of dimension two. Let y1 and y2 be
two solutions to L[y] = 0. Then the following statements are equivalent.

1. W (y1, y2)(t0) 6= 0 for some t0 ∈ I.

2. W (y1, y2)(t) 6= 0 for all t ∈ I.

3. The functions y1 and y2 form a fundamental set of solutions, i.e., y1 and y2 are linearly
independent.

4. The functions y1, y2 span the solution space of L[y] = 0. In other words, the general
solution to the equation is y = c1y1 + c2y2.

5. The functions y1 and y2 constitute a basis for the solution space of L[y] = 0. In other
words, every solution to L[y] = 0 can be expressed uniquely in the form y = c1y1 + c2y2,
where c1, c2 are constants.

Proof. The only thing we need to prove is that there exists solutions with W (y1, y2)(t0) 6= 0
for some t0 ∈ I. Take any t0 ∈ I. By Theorem 4.1.1, there exists solutions y1 and y2 to the
homogeneous equation L[y] = 0 with initial conditions{

y1(t0) = 1
y′1(t0) = 0

and

{
y2(t0) = 0
y′2(t0) = 1

.

Then W (y1, y2)(t0) = det(I) = 1 6= 0 and we are done.

Exercise 4.1

1. Determine whether the following sets of functions are linearly dependent or independent.

(a) f(x) = 1− 3x; g(x) = 2− 6x

(b) f(x) = 1− x; g(x) = 1 + x

(c) f(x) = ex; g(x) = xex

(d) f(x) = ex; g(x) = 3ex+1

(e) f(x) = cosx+ sinx; g(x) = cosx− sinx

(f) f(x) = cos2 x; g(x) = 1 + cos 2x

(g) f(x) = sinx cosx; g(x) = sin 2x

(h) f(x) = 1− x; g(x) = x− x2; h(x) = x2 − 1

2. Find the Wronskian of the following pair of functions.

(a) e2t, e−3t

(b) cos t, sin t

(c) e2t, te2t

(d) t, tet
(e) et cos t, et sin t

(f) 1− cos 2t, sin2 t
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3. If y1 and y2 form a fundamental set of solutions of ty′′+2y′+tety = 0 and if W (y1, y2)(1) =
3, find the value of W (y1, y2)(5).

4. If y1 and y2 form a fundamental set of solutions of t2y′′ − 2y′ + (3 + t)y = 0 and if
W (y1, y2)(2) = 3, find the value of W (y1, y2)(6).

5. Let y1(t) = t3 and y2(t) = |t|3. Show that W [y1, y2](t) ≡ 0. Explain why y1 and y2 cannot
be two solutions to a homogeneous second order linear equation y′′ + p(t)y′ + q(t)y = 0.

6. Suppose f , g and h are differentiable functions. Show that W (fg, fh) = f2W (g, h).

4.2 Reduction of order

We have seen in the last section that to find the general solution of the homogeneous equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, t ∈ I,

it suffices to find two linearly independent solutions. Suppose we know one non-zero solution
y1(t) to the equation L[y] = 0, how do we find a second solution y2(t) so that y1 and y2 are
linearly independent? We may use the so called reduction of order. We let

y(t) = y1(t)v(t).

where v(t) is a function to be determined. Then we have{
y′ = y1v

′ + y′1v,
y′′ = y1v

′′ + 2y′1v
′ + y′′1v.

Substituting them into the equation L[y] = 0, we obtain

(y1v
′′ + 2y′1v

′ + y′′1v) + p(y1v
′ + y′1v) + qy1v = 0

y1v
′′ + (2y′1 + py1)v

′ + (y′′1 + py′1 + qy1)v = 0

Since y1 is a solution to L[y] = 0, the coefficient of v is zero, and so the equation becomes

y1v
′′ + (2y′1 + py1)v

′ = 0,

which is a first order linear equation of v′. We can get a second solution to L[y] = 0 by finding
a non-constant solution to this first order linear order. Then we can write down the general
solution to the equation L[y] = 0.

Example 4.2.1. Given that y1(t) = e−2t is a solution to

y′′ + 4y′ + 4y = 0,

find the general solution of the equation.

Solution: We set y = e−2tv, then{
y′ = e−2tv′ − 2e−2tv,
y′′ = e−2tv′′ − 4e−2tv′ + 4e−2tv.

.

Thus the equation becomes

e−2tv′′ − 4e−2tv′ + 4e−2tv + 4(e−2tv′ − 2e−2tv) + 4e−2tv = 0

e−2tv′′ = 0

v′′ = 0

v′ = c1

v = c1t+ c2

Therefore the general solution is y = e−2t(c1t+ c2) = c1te
−2t + c2e

−2t. �
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Example 4.2.2. Given that y1(t) = t−1 is a solution of

2t2y′′ + 3ty′ − y = 0, t > 0,

find the general solution of the equation.

Solution: We set y = t−1v, then{
y′ = t−1v′ − t−2v,
y′′ = t−1v′′ − 2t−2v′ + 2t−3v.

Thus the equation becomes

2t2(t−1v′′ − 2t−2v′ + 2t−3v) + 3t(t−1v′ − t−2v)− t−1v = 0

2tv′′ − v′ = 0

t−
1
2 v′′ − 1

2
t−

3
2 v′ = 0

d

dt
(t−

1
2 v′) = 0

t−
1
2 v′ = c

v′ = ct
1
2

v = c1t
3
2 + c2

Therefore the general solution is y = (c1t
3
2 + c2)t

−1 = c1t
1
2 + c2t

−1. �

Exercise 4.2

1. Using the given solution y1(t) and the method of reduction of order to find the general
solution to the following second order linear equations.

(a) t2y′′ − 2y = 0; y1(t) = t2

(b) t2y′′ + 4ty′ + 2y = 0; y1(t) = t−1

(c) t2y′′ − y′ + y = 0; y1(t) = t

(d) y′′ − 2y′ + y = 0; y1(t) = et

(e) ty′′ − y′ + 4t3y = 0; y1(t) = cos(t2)

(f) t2y′′ + 3ty′ + y = 0; y1(t) = t−1

(g) t2y′′ − 3ty′ + 4y = 0; y1(t) = t2

(h) t2y′′ + ty′ + y = 0; y1(t) = cos(lnx)

4.3 Homogeneous equations with constant coefficients

We consider homogeneous equation with constant coefficients

L[y] = a
d2y

dt2
+ b

dy

dt
+ cy = 0,

where a, b, c are constants. The equation

ar2 + br + c = 0

is called the characteristic equation of the differential equation. Let r1, r2 be the two (com-
plex) roots (can be equal) of the characteristic equation. The general solution of the equation
can be written in terms of r1, r2 is given according in the following table.
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Discriminant Nature of roots General solution

b2 − 4ac > 0 r1, r2 are distinct and real y = c1e
r1t + c2e

r2t

b2 − 4ac = 0 r1 = r2 are equal y = c1e
r1t + c2te

r1t

b2 − 4ac < 0 r1, r2 = λ± iµ (µ > 0) y = eλt (c1 cos(µt) + c2 sin(µt))

Example 4.3.1. Solve
y′′ − y′ − 6y = 0.

Solution: Solving the characteristic equation

r2 − r − 6 = 0

r = 3,−2.

Thus the general solution is
y = c1e

3t + c2e
−2t.

�

Example 4.3.2. Solve the initial value problem{
y′′ − 4y′ + 4y = 0,
y(0) = 3, y′(0) = 1.

Solution: The characteristic equation

r2 − 4r + 4 = 0

has a double root r1 = r2 = 2. Thus the general solution is

y = c1e
2t + c2te

2t.

Now

y′ = 2c1e
2t + c2e

2t + 2c2te
2t

= (2c1 + c2)e
2t + 2c2te

2t

Thus {
y(0) = c1 = 3
y′(0) = 2c1 + c2 = 1

⇒
{
c1 = 3
c2 = −5

Therefore
y = 3e2t − 5te2t.

�

Example 4.3.3. Solve the initial value problem{
y′′ − 6y′ + 25y = 0, t ∈ I
y(0) = 3, y′(0) = 1

.

Solution: The roots of the characteristic equation is

r1, r2 = 3± 4i.

Thus the general solution is
y = e3t(c1 cos 4t+ c2 sin 4t).
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Now

y′ = 3e3t(c1 cos 4t+ c2 sin 4t) + e3t(−4c1 sin 4t+ 4c2 cos 4t)

= e3t((3c1 + 4c2) cos 4t+ (3c2 − 4c1) sin 4t)

Thus {
y(0) = c1 = 3
y′(0) = 3c1 + 4c2 = 1

⇒
{
c1 = 3
c2 = −2

Therefore
y = e3t(3 cos 4t− 2 sin 4t).

�

Example 4.3.4. Solve
y′′ + 9y = 0.

Solution: The roots of the characteristic equation are ±3i. Therefore the general solution is

y = c1 cos 3t+ c2 sin 3t.

�

One final point before we end this section. In the second case i.e. r1 = r2, the solution
y = ter1t can be obtained by the method of order reduction explained in Section 4.2. Suppose
the characteristic equation ar2 + br+ c = 0 has real and repeated roots r1 = r2. Then y1 = er1t

is a solution to the differential equation. To find the second solution, let y(t) = v(t)er1t. Then{
y′ = (v′ + r1v)er1t

y′′ = (v′′ + 2r1v
′ + r21v)er1t.

The equation reads

ay′′ + by′ + cy = 0

a(v′′ + 2r1v
′ + r21v)er1t + b(v′ + r1v)er1t + cver1t = 0

av′′ + (2ar1 + b)v′ + (ar21 + br1 + c)v = 0

v′′ = 0.

Note that r1 is a double root of the characteristic equation, so we have ar21 + br1 + c = 0 and
2ar1 + b = 0. Hence v(t) = c1 + c2t for some constants c1, c2 and we obtain the general solution

y = (c1 + c2t)e
r1t.

Exercise 4.3

1. Find the general solution of the following second order linear equations.

(a) y′′ + y′ − 6y = 0

(b) y′′ + 9y = 0

(c) y′′ − 3y′ + 2y = 0

(d) y′′ − 8y′ + 16y = 0

(e) y′′ + 4y′ + 13y = 0

(f) y′′ − 2y′ + 5y = 0

2. Solve the following initial value problems.
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(a) y′′ + 3y′ + 2y = 0; y(0) = 1, y′(0) = 1

(b) y′′ + 3y′ = 0; y(0) = −2, y′(0) = 3

(c) y′′ + 5y′ + 6y = 0; y(0) = 2, y′(0) = 3

(d) 4y′′ + 4y′ + 5y = 0; y(0) = 4, y′(0) = 1

3. Use the substitution u = lnx to find the general solutions of the following Euler equations.

(a) t2y′′ + 2ty′ − 12y = 0 (b) t2y′′ − 3ty′ + 4y = 0

4.4 Method of undetermined coefficients

To solve the nonhomogeneous equation

L[y] = ay′′ + by′ + cy = g(t), t ∈ I,

where a, b, c are constants and g(t) is a continuous function, we may first find a (particular)
solution yp = yp(t). Then the general solution is

y = yc + yp,

where
yc = c1y1 + c2y2,

where yc, which is called a complementary function, is any solution to the associated homoge-
neous equation L[y] = 0. This is because if y = y(t) is a solution to L[y] = g(t), then y − yp
must be a solution to the associated homogeneous equation L[y] = 0.

When g(t) = a1g1(t) + a2g2(t) + · · · + akgk(t) where a1, a2, · · · , ak are real numbers and each
gi(t) is of the form eαt, cosωt, sinωt, eαt cosωt, eαt sinωt, a polynomial in t or a product of a
polynomial and one of the above functions, then a particular solution yp(t) is of the form which
is listed in the following table.

The particular solution of ay′′ + by′ + cy = g(t)

g(t) yp(t)

Pn(t) = ant
n + · · ·+ a1t+ a0 ts(Ant

n + · · ·+A1t+A0)

Pn(t)eαt ts(Ant
n + · · ·+A1t+A0)e

αt

Pn(t) cosωt, Pn(t) sinωt ts
(

(Ant
n + · · ·+A1t+A0) cosωt

+(Bnt
n + · · ·+B1t+B0) sinωt

)

Pn(t)eαt cosωt, Pn(t)eαt sinωt tseαt
(

(Ant
n + · · ·+A1t+A0) cosωt

+(Bnt
n + · · ·+B1t+B0) sinωt

)
Notes: Here s = 0, 1, 2 is the smallest nonnegative integer that will ensure that
no term in yp(t) is a solution to the associated homogeneous equation L[y] = 0.

The values of the constants A0, A1, · · · , An, B0, B1, · · · , Bn can be obtained by substituting yp(t)
to the equation L[y] = g(t).

Example 4.4.1. Find a particular solution to y′′ − y′ + 2y = 4t2.

Solution: A particular solution is of the form yp = A2t
2 +A1t+A0. To find A0, A1, A2, we have{

y′p = 2A2t+A1,

y′′p = 2A2.
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Putting them into the equation, we have

y′′p − y′p + 2yp = 4t2

2A2 − (2A2t+A1) + 2(A2t
2 +A1t+A0) = 4t2

2A2t
2 + (−2A2 + 2A1)t+ (2A2 −A1 + 2A0) = 4t2

By comparing the coefficients, we obtain
2A2 = 4

−2A2 + 2A1 = 0
2A2 −A1 + 2A0 = 0

⇒


A2 = 2
A1 = 2
A0 = −1

.

Hence a particular solution is yp = 2t2 + 2t− 1. �

Example 4.4.2. Solve y′′ − 3y′ − 4y = 18e2t.

Solution: The roots of the characteristic equation r2 − 3r − 4 = 0 is r = 4,−1. So the comple-
mentary function is

yc = c1e
4t + c2e

−t.

Since 2 is not a root of r2−3r−4 = 0, we let yp = Ae2t, where A is a constant to be determined.
Now {

y′p = 2Ae2t

y′′p = 4Ae2t

By comparing coefficients of

y′′p − 3y′p − 4yp = 18e2t

(4A− 3(2A)− 4A)e2t = 18e2t

−6Ae2t = 18e2t

we get A = −3 and a particular solution is yp = −3e−3t. Therefore the general solution is

y = yc + yp = c1e
4t + c2e

−t − 3e−3t.

�

Example 4.4.3. Find a particular solution of y′′ − 3y′ − 4y = 34 sin t.

Solution: Since ±i are not roots of r2 − 3r − 4 = 0, we let

yp = A cos t+B sin t.

Then {
y′p = B cos t−A sin t

y′′p = −A cos t−B sin t

By comparing the coefficients of

y′′p − 3y′p − 4yp = 34 sin t

(−A cos t−B sin t)− 3(B cos t−A sin t)− 4(A cos t+B sin t) = 34 sin t

(−A− 3B − 4A) cos t+ (−B + 3A− 4B) sin t = 34 sin t,

we have {
−A− 3B − 4A = 0
−B + 3A− 4B = 34

⇒
{
A = 3
B = −5

.

Hence a particular solution is yp = 3 cos t− 5 sin t. �
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Example 4.4.4. Find a particular solution of y′′ − 3y′ − 4y = 52et sin 2t.

Solution: Since 1± 2i are not roots of r2 − 3r − 4 = 0, we let

yp = et(A cos 2t+B sin 2t).

Then {
y′p = et((A+ 2B) cos 2t+ (B − 2A) sin 2t),

y′′p = et((−3A+ 4B) cos 2t+ (−4A− 3B) sin 2t).

By comparing coefficients

y′′p − 3y′p − 4yp = 52et sin 2t

et
[

((−3A+ 4B)− 3(A+ 2B)− 4A) cos 2t
+((−4A− 3B)− 3(B − 2A)− 4B) sin 2t

]
= 52et sin 2t

(−10A− 2B) cos 2t+ (2A− 10B) sin 2t = 52 sin 2t

we have (A,B) = (1,−5) and a particular solution is yp = et(cos 2t− 5 sin 2t). �

Example 4.4.5. Find a particular solution of y′′ − 3y′ − 4y = 10e−t.

Solution: Since −1 is a (simple) root of the characteristic equation r2 − 3r − 4 = 0, we let

yp = Ate−t.

Then {
y′p = (−At+A)e−t

y′′p = (At− 2A)e−t.

Now we want

y′′p − 3y′p + 4yp = 10e−t

((At− 2A)− 3(−At+A)− 4At)e−t = 10e−t

−5Ae−t = 10e−t.

Hence we take A = −2 and a particular solution is yp = −2te−t. �

Example 4.4.6. Find a particular solution of y′′ − 3y′ − 4y = 10e−t + 34 sin t+ 52et sin 2t.

Solution: From the above three examples, a particular solution is

yp = −2te−t + 3 cos t− 5 sin t+ et cos 2t− 5et sin 2t.

�

Example 4.4.7. Find a particular solution of y′′ + 4y = 4 cos 2t.

Solution: Since ±i are roots of the characteristic equation r2 + 4 = 0, we let

yp = At cos 2t+Bt sin 2t.

Then {
y′p = (2Bt+A) cos 2t+ (−2At+B) sin 2t

y′′p = (−4At+ 4B) cos 2t+ (−4Bt− 4A) sin 2t.

By comparing coefficients of

y′′p + 4yp = 4 cos 2t

(−4At+ 4B) cos 2t+ (−4Bt− 4A) sin 2t+ 4(At cos 2t+Bt sin 2t) = 4 cos 2t

4B cos 2t− 4A sin 2t = 4 cos 2t,

we take A = 0, B = 1 and a particular solution is yp = t cos 2t. �



Second and higher order linear equations 74

Example 4.4.8. Solve y′′ + 2y′ + y = 6te−t.

Solution: The characteristic equation r2+2r+1 = 0 has a double root −1. So the complementary
function is

yc = c1e
−t + c2te

−t.

Since −1 is a double root of the characteristic equation, we let yp = t2(At+B)e−t, where A and
B are constants to be determined. Now{

y′p = (−At3 + (3A−B)t2 + 2Bt)e−t

y′′p = (At3 + (−6A+B)t2 + (6A− 4B)t+ 2B)e−t.

By comparing coefficients of

y′′p + 2y′p + yp = 6te−t (At3 + (−6A+B)t2 + (6A− 4B)t+ 2B)
+2(−At3 + (3A−B)t2 + 2Bt)

+(At3 +Bt2)

 e−t = 6te−t

(6At+ 2B)e−t = 6te−t,

we take A = 1, B = 0 and a particular solution is yp = t3e−t. Therefore the general solution is

y = yc + yp = c1e
−t + c2te

−t + t3e−t.

�

Example 4.4.9. Determine the appropriate form for a particular solution of

y′′ + y′ − 2y = 3t− sin 4t+ 3t2e2t.

Solution: The characteristic equation r2 + r− 2 = 0 has roots r = 2,−1. So the complementary
function is

yc = c1e
2t + c2e

−t.

A particular solution takes the form

yp = (A1t+A0) + (B1 cos 4t+B2 sin 4t) + t(C2t
2 + C1t+ C0)e

2t.

�

Example 4.4.10. Determine the appropriate form for a particular solution of

y′′ + 2y′ + 5y = te3t − t cos t+ 2te−t sin 2t.

Solution: The characteristic equation r2+2r+5 = 0 has roots r = −1±2i. So the complementary
function is

yc = e−t(c1 cos 2t+ c2 sin 2t).

A particular solution takes the form

yp = (A1t+A0)e
3t+(B1t+B2) cos t+(B3t+B4) sin t+ te−t((C1t+C2) cos 2t+(C3t+C4) sin 2t).

�

Exercise 4.4

1. Use the method of undetermined coefficients to find the general solution of the following
nonhomogeneous second order linear equations.
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(a) y′′ − 2y′ − 3y = 3e2t

(b) y′′ + 2y′ + 5y = 3 cos 2t

(c) y′′ + 9y = t2e3t + 6

(d) y′′ + y′ − 2y = 2t

(e) y′′ + 2y′ + y = 2e−t

(f) y′′ − 2y′ + y = tet + 4

(g) y′′ + 4y = t2 + 3et

(h) y′′ + 2y′ + 5y = 4e−t cos 2t

(i) y′′ − 3y′ − 4y = 6e2t + 2 sin t

(j) y′′ + 4y′ + 4y = 8e2t + 8e−2t

2. Write down a suitable form yp(t) of a particular solution of the following nonhomogeneous
second order linear equations.

(a) y′′ + 3y′ = 2t4 + t2e−3t + sin 3t

(b) y′′ − 5y′ + 6y = et cos 2t+ 3te2t sin t

(c) y′′ + y = t(1 + sin t)

(d) y′′ + 2y′ + 2y = e−t(2− cos t+ 5t2 sin t)

(e) y′′ − 4y′ + 4y = t(2 + e2t − 3 cos 2t)

4.5 Variation of parameters

To solve a non-homogeneous equation L[y] = g(t), we may use another method called variation
of parameters. Suppose y(t) = c1y1(t)+c2y2(t), where c1, c2 are constants, is the general solution
to the associated homogeneous equation L[y] = 0. The idea is to let the two parameters c1, c2
vary and see whether we could choose suitable functions u1(t), u2(t), which depend on g(t),
such that y = u1(t)y1(t) + u2(t)y2(t) is solution to L[y] = g(t). It turns out that this is always
possible.

Theorem 4.5.1. Let y1 and y2 be a fundamental set of solution of the homogeneous equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, t ∈ I,

where p(t) and q(t) are continuous functions on I and

W = W (y1, y2)(t) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y′1y2,

be the Wronskian. Let g = g(t) be any continuous function. Suppose u1 and u2 are differentiable
functions on I such that  u′1 = −gy2

W
u′2 =

gy1
W

,

then yp = u1y1 + u2y2 is a solution to

L[y] = g, t ∈ I.

Proof. Observe that u′1 and u′2 are solution to the system of equations(
y1 y2
y′1 y′2

)(
u′1
u′2

)
=

(
0
g

)
or equivalently {

u′1y1 + u′2y2 = 0
u′1y
′
1 + u′2y

′
2 = g

.
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Hence we have

y′p = u′1y1 + u′2y2 + u1y
′
1 + u2y

′
2

= u1y
′
1 + u2y

′
2

and

y′′p = u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2

= g(t) + u1y
′′
1 + u2y

′′
2 .

Therefore

y′′p + p(t)y′p + q(t)yp = g(t) + u1y
′′
1 + u2y

′′
2 + p(t)(u1y

′
1 + u2y

′
2) + q(t)(u1y1 + u2y2)

= g(t) + u1(y
′′
1 + p(t)y′1 + q(t)y1) + u2(y

′′
2 + p(t)y′2 + q(t)y2)

= g(t)

where the last equality follows from the fact that y1 and y2 are solution to L[y] = 0.

Example 4.5.2.

y′′ + 4y =
3

sin t

Solution: Solving the corresponding homogeneous equation, we let

y1 = cos 2t, y2 = sin 2t.

We have

W (y1, y2)(t) =

∣∣∣∣ cos 2t sin 2t
−2 sin 2t 2 cos 2t

∣∣∣∣ = 2.

So 
u′1 = −gy2

W
= −

(
3

sin t

)
sin 2t

2
= −3(2 cos t sin t)

2 sin t
= −3 cos t,

u′2 =
gy1
W

=

(
3

sin t

)
cos 2t

2
=

3(1− 2 sin2 t)

2 sin t
=

3

2 sin t
− 3 sin t.

Hence, {
u1 = −3 sin t+ c1,

u2 = 3
2 ln | csc t− cot t|+ 3 cos t+ c2.

and the general solution is

y = u1y1 + u2y2

= (−3 sin t+ c1) cos 2t+ (
3

2
ln | csc t− cot t|+ 3 cos t+ c2) sin 2t

= c1 cos 2t+ c2 sin 2t− 3 sin t cos 2t+
3

2
sin 2t ln | csc t− cot t|+ 3 cos t sin 2t

= c1 cos 2t+ c2 sin 2t+
3

2
sin 2t ln | csc t− cot t|+ 3 sin t

where c1, c2 are constants. �

Example 4.5.3.

y′′ − 3y′ + 2y =
e3t

et + 1
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Solution: Solving the corresponding homogeneous equation, we let

y1 = et, y2 = e2t.

We have

W (y1, y2)(t) =

∣∣∣∣ et e2t

et 2e2t

∣∣∣∣ = e3t.

So 
u′1 = −gy2

W
= −

(
e3t

et + 1
e2t
)
/e3t = − e2t

et + 1
,

u′2 =
gy1
W

=

(
e3t

et + 1
et
)
/e3t =

et

et + 1
.

Thus

u1 = −
∫

e2t

et + 1
dt

= −
∫

et

et + 1
det

=

∫ (
1

et + 1
− 1

)
d(et + 1)

= log(et + 1)− (et + 1) + c1

and

u2 =

∫
et

et + 1
dt

=

∫
1

et + 1
d(et + 1)

= log(et + 1) + c2.

Therefore the general solution is

y = u1y1 + u2y2

= (log(et + 1)− (et + 1) + c1)e
t + (log(et + 1) + c2)e

2t

= c1e
t + c2e

2t + (et + e2t) log(et + 1)

�

Exercise 4.5

1. Use the method of variation of parameters to find the general solution of the following
nonhomogeneous second order linear equations.

(a) y′′ − 5y′ + 6y = 2et

(b) y′′ − y′ − 2y = 2e−t

(c) y′′ + 2y′ + y = 4e−t

(d) y′′ + y = tan t; 0 < t < π
2

(e) y′′ + 9y = 9 sec2 3t; 0 < t < π
6

(f) y′′ − 2y′ + y =
et

1 + t2

(g) y′′ − 3y′ + 2y =
1

1 + e−t

2. Use the method of variation of parameters to find the general solution of the following
nonhomogeneous second order linear equations. Two linearly independent solutions y1(t)
and y2(t) to the corresponding homogeneous equations are given.
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(a) t2y′′ − 2y = 3t2 − 1, t > 0; y1(t) = t−1, y2(t) = t2

(b) t2y′′ − t(t+ 2)y′ + (t+ 2)y = 2t3, t > 0; y1(t) = t, y2(t) = tet

(c) (1− t)y′′ + ty′ − y = 2(t− 1)2e−t, 0 < t < 1; y1(t) = t, y2(t) = et

(d) t2y′′ − 3ty′ + 4y = t2 ln t, t > 0; y1(t) = t2, y2(t) = t2 ln t

4.6 Mechanical and electrical vibrations

One of the reasons why second order linear equations with constant coefficients are worth study-
ing is that they serve as mathematical models of simple vibrations.
Mechanical vibrations
Consider a mass m hanging on the end of a vertical spring of original length l. Let u(t), mea-
sured positive downward, denote the displacement of the mass from its equilibrium position at
time t. Then u(t) is related to the forces acting on the mass through Newton’s law of motion

mu′′(t) + ku(t) = f(t), (2.6.1)

where k is the spring constant and f(t) is the net force (excluding gravity and force from the
spring) acting on the mass.
Undamped free vibrations
If there is no external force, then f(t) = 0 and equation (2.6.1) reduces to

mu′′(t) + ku(t) = 0.

The general solution is
u = C1 cosω0t+ C2 sinω0t,

where

ω0 =

√
k

m

is the natural frequency of the system. The period of the vibration is given by

T =
2π

ω0
= 2π

√
m

k
.

We can also write the solution in the form

u(t) = A cos(ω0t− α).

Then A is the amplitude of the vibration. Moreover, u satisfies the initial conditions

u(0) = u0 = A cosα and u′(0) = u′0 = Aω0 sinα.

Thus we have

A = u20 +
u′20
ω2
0

and α = tan−1
u′0
u0ω0

.

Damped free vibrations
If we include the effect of damping, the differential equation governing the motion of mass is

mu′′ + γu′ + ku = 0,

where γ is the damping coefficient. The roots of the corresponding characteristic equation are

r1, r2 =
−γ ±

√
γ2 − 4km

2m
.

The solution of the equation depends on the sign of γ2 − 4km and are listed in the following
table.
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Solution of mu′′ + γu′ + ku = 0

Case Solution Damping

γ2

4km
< 1 e−

γ
2m

t(C1 cosµt+ C2 sinµt) Small damping

γ2

4km
= 1 (C1t+ C2)e

− γ
2m

t Critical damping

γ2

4km
> 1 C1e

r1t + C2e
r2t Overdamped

Here

µ =

√
k

m
− γ2

4m2
= ω0

√
1− γ2

4km

is called the quasi frequency. As γ2/4km increases from 0 to 1, the quasi frequency µ decreases
from ω0 =

√
k/m to 0 and the quasi period increases from 2π

√
m/k to infinity.

Electric circuits
Second order linear differential equation with constant coefficients can also be used to study
electric circuits. By Kirchhoff’s law of electric circuit, the total charge Q on the capacitor in a
simple series LCR circuit satisfies the differential equation

L
d2Q

dt2
+R

dQ

dt
+
Q

C
= E(t),

where L is the inductance, R is the resistance, C is the capacitance and E(t) is the impressed
voltage. Since the flow of current in the circuit is I = dQ/dt, differentiating the equation with
respect to t gets

LI ′′ +RI ′ + C−1I = E′(t).

Therefore the results for mechanical vibrations in the preceding paragraphs can be used to study
LCR circuit.
Forces vibrations with damping
Suppose that an external force F0 cosωt is applied to a damped (γ > 0)) spring-mass system.
Then the equation of motion is

mu′′ + γu′ + ku = F0 cosωt.

The general solution of the equation must be of the form

u = c1u1(t) + c2u2(t) +A cos(ωt− α) = uc(t) + U(t).

Since m, γ, k are all positive, the real part of the roots of the characteristic equation are always
negative. Thus uc → 0 as t → ∞ and it is called the transient solution. The remaining
term U(t) is called the steady-state solution or the forced response. Straightforward, but
somewhat lengthy computations shows that

A =
F0

∆
, cosα =

m(ω2
0 − ω2)

∆
, sinα =

γω

∆
,

where

∆ =
√
m2(ω2

0 − ω2)2 + γ2ω2 and ω0 =
√
k/m.

If γ2 < 2mk, resonance occurs, i.e. the maximum amplitude

Amax =
F0

γω0

√
1− γ2/4mk
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is obtained, when

ω = ωmax = ω2
0

(
1− γ2

2mk

)
.

We list in the following table how the amplitude A and phase angle α of the steady-state
oscillation depends on the frequency ω of the external force.

Amplitude and phase of forced vibration

Frequency Amplitude Phase angle

ω → 0 A→ F0
k α→ 0

ω = ω2
0

(
1− γ2

2mk

)
F0

γω0

√
1−γ2/4mk

π
2

ω →∞ A→ 0 α→ π

Forced vibrations without damping
The equation of motion of an undamped forced oscillator is

mu′′ + ku = F0 cosωt.

The general solution of the equation is
u = c1 cosω0t+ c2 sinω0t+

F0 cosωt

m(ω2
0 − ω2)

, ω 6= ω0

u = c1 cosω0t+ c2 sinω0t+
F0t sinω0t

2mω0
, ω = ω0

Suppose ω 6= ω0. If we assume that the mass is initially at rest so that the initial condition are
u(0) = u′(0) = 0, then the solution is

u =
F0

m(ω2
0 − ω2)

(cosωt− cosω0t)

=
2F0

m(ω2
0 − ω2)

sin
(ω0 − ω)t

2
sin

(ω0 + ω)t

2
.

If |ω0−ω| is small, then ω0 +ω is much greater than |ω0−ω|. The motion is a rapid oscillation
with frequency (ω0 + ω)/2 but with a slowly varying sinusoidal amplitude

2F0

m|ω2
0 − ω2|

∣∣∣∣sin (ω0 − ω)t

2

∣∣∣∣ .
This type of motion is called a beat and |ω0 − ω|/2 is the beat frequency.

4.7 Higher order linear equations

The theoretical structure and methods of solution developed in the preceding sections for second
order linear equations extend directly to linear equations of third and higher order. Consider
the nth order linear differential equation

L[y] = y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = g(t), t ∈ I,

where p0(t), p1(t), · · · , pn−1(t) are continuous functions on I. We may generalize the Wronskian
as follow.
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Definition 4.7.1 (Wronskian). Let y1, y2, · · · , yn be differentiable functions. Then we define
the Wronskian to be the function

W = W (t) =

∣∣∣∣∣∣∣∣∣∣∣

y1(t) y2(t) · · · yn(t)
y′1(t) y′2(t) · · · y′n(t)
y′′1(t) y′′2(t) · · · y′′n(t)

...
...

. . .
...

y
(n−1)
1 (t) y

(n−1)
2 (t) · · · y

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣∣
.

We have the analogue of Theorem 4.1.11 and Theorem 4.1.14 for higher order equation.

Theorem 4.7.2 (Abel’s Theorem). Suppose y1, y2, · · · , yn are solutions of the homogeneous
equation

L[y] =
dny

dtn
+ pn−1(t)

dn−1y

dtn−1
· · ·+ p1(t)

dy

dt
+ p0(t)y = 0, on I.

Then the Wronskian W (y1, y2, · · · , yn) satisfies

W (y1, y2, · · · , yn)(t) = c exp

(
−
∫
pn−1(t)dt

)
for some constant c.

Theorem 4.7.3. The solution space of the homogeneous equation

L[y] = y(n) + pn−1(t)y
(n−1) + · · ·+ p1(t)y

′ + p0(t)y = 0, t ∈ I,

is of dimension n. Let y1, y2, · · · , yn be solutions of L[y] = 0, then the following statements are
equivalent.

1. W (t0) 6= 0 for some t0 ∈ I.

2. W (t) 6= 0 for all t ∈ I.

3. The functions y1, y2, · · · , yn form a fundamental set of solutions, i.e., y1, y2, · · · , yn are
linearly independent.

4. Every solution of the equation is of the form c1y1 + c2y2 + · · · + cnyn for some constants
c1, c2, · · · , cn, i.e., y1, y2, · · · , yn span the solution space of L[y] = 0.

5. The functions y1, y2, · · · , yn constitute a basis for the solution space of L[y] = 0.

Now we assume that the coefficients are constants and consider

L[y] = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0, t ∈ I,

where a0, a1, · · · , an−1 are constants. The equation

rn + an−1r
n−1 + · · ·+ a1r + a0 = 0,

is called the characteristic equation of the differential equation.

If λ is a real root of the characteristic equation with multiplicity m, then

eλt, teλt, · · · , tm−1eλt
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are solutions to the equation.

If ±µi are purely imaginary roots of the characteristic equation with multiplicity m, then

cosµt, t cosµt, · · · , tm−1 cosµt, and sinµt, t sinµt, · · · , tm−1 sinµt

are solutions to the equation.

If λ± µi are complex roots of the characteristic equation with multiplicity m, then

eλt cosµt, teλt cosµt, · · · , tm−1eλt cosµt,

and
eλt sinµt, teλt sinµt, · · · , tm−1eλt sinµt

are solutions to the equation.

We list the solutions for differential nature of roots in the following table.

Solutions of L[y] = 0

Root with multiplicity m Solutions

Real number λ eλt, teλt, · · · , tm−1eλt

Purely imaginary number µi
cosµt, t cosµt, · · · , tm−1 cosµt,
sinµt, t sinµt, · · · , tm−1 sinµt

Complex number λ+ µi
eλt cosµt, teλt cosµt, · · · , tm−1eλt cosµt,
eλt sinµt, teλt sinµt, · · · , tm−1eλt sinµt

Note that by fundamental theorem of algebra, there are exactly n functions which are of the
above forms. It can be proved that the Wronskian of these function are not identically zero.
Thus these n functions constitute a fundamental set of solutions to the homogeneous equation
L[y] = 0.

Example 4.7.4. Find the general solution of

y(4) + y′′′ − 7y′′ − y′ + 6y = 0.

Solution: The roots of the characteristic equation

r4 + r3 − 7r2 − r + 6 = 0

are
r = −3,−1, 1, 2.

Therefore the general solution is

y(t) = c1e
−3t + c2e

−t + c3e
t + c4e

2t.

�

Example 4.7.5. Solve the initial value problem{
y(4) − y = 0
(y(0), y′(0), y′′(0), y′′′(0)) = (2,−1, 0, 3).
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Solution: The roots of the characteristic equation

r4 − 1 = 0

are
r = ±1,±i.

Therefore the solution is of the form

y(t) = c1e
t + c2e

−t + c3 cos t+ c4 sin t.

The initial condition gives
1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1




c1
c2
c3
c4

 =


2
−1
0
3


We find that 

c1
c2
c3
c4

 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1


−1

2
−1
0
3



=
1

4


1 1 1 1
1 −1 0 −1
2 0 −2 0
0 2 0 −2




2
−1
0
3



=


1
0
1
−2


Therefore the solution to the initial value problem is y = et + cos t− 2 sin t. �

Example 4.7.6. Find the general solution of

y(4) + 2y′′ + y = 0.

Solution: The characteristic equation is

r4 + 2r2 + 1 = 0

and its roots are
r = i, i,−i,−i.

Thus the general solution is

y(t) = c1 cos t+ c2 sin t+ c3t cos t+ c4t sin t.

�

Example 4.7.7. Find the general solution of

y(4) + y = 0.
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Solution: The characteristic equation is

r4 + 1 = 0

and its roots are

r = e
2k+1

4
πi, k = 0, 1, 2, 3

= cos(
2k + 1

4
π) + i sin(

2k + 1

4
π), k = 0, 1, 2, 3

= ±
√

2

2
±
√

2

2
i

Thus the general solution is

y(t) = c1e
√

2
2
t cos

√
2

2
t+ c2e

√
2

2
t sin

√
2

2
t+ c3e

−
√
2

2
t cos

√
2

2
t+ c4e

−
√
2

2
t sin

√
2

2
t.

�
Method of undetermined coefficients
The main difference in using the method of undetermined coefficients for higher order equations
stems from the fact that roots of the characteristic equation may have multiplicity greater than
2. Consequently, terms proposed for the nonhomogeneous part of the solution may need to
be multiplied by higher powers of t to make them different from terms in the solution of the
corresponding homogeneous equation.

Example 4.7.8. Find the general solution of

y′′′ − 3y′′ + 3y′ − y = 2tet − et.

Solution: The characteristic equation

r3 − 3r2 + 3r − 1 = 0

has a triple root r = 1. So the general solution of the associated homogeneous equation is

yc(t) = c1e
t + c2te

t + c3t
2et.

Since r = 1 is a root of multiplicity 3, a particular solution is of the form

yp(t) = t3(At+B)et = (At4 +Bt3)et.

We have 
y′p = (At4 + (4A+B)t3 + 3Bt2)et

y′′p = (At4 + (8A+B)t3 + (12A+ 6B)t2 + 6Bt)et

y′′p = (At4 + (12A+B)t3 + (36A+ 9B)t2 + (24A+ 18B)t+ 6B)et

Substituting yp(t) into the equation, we have

y′′′p − 3y′′p + 3y′p − yp = 2tet − et

24Atet + 6Bet = 2tet − et.

(Note that the coefficients of t4et, t3et, t2et will automatically be zero since r = 1 is a triple root
of the characteristic equation.) Thus

A =
1

12
, B = −1

6
.
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Therefore the general solution is

y(t) = c1e
t + c2te

t + c3t
2et − 1

6
t3et +

1

12
t4et.

�

Example 4.7.9. Find a particular solution of the equation

y(4) + 2y′′ + y = 4 cos t− sin t.

Solution: The general solution of the associated homogeneous equation is

yc(t) = c1 cos t+ c2 sin t+ c3t cos t+ c4t sin t.

Since r = ±i are double roots of the equation, a particular solution is of the form

yp(t) = t2(A cos t+B sin t) = At2 cos t+Bt2 sin t.

We have 
y′p = (Bt2 + 2At) cos t+ (−At2 + 2Bt) sin t

y′′p = (−At2 + 4Bt+ 2A) cos t+ (−Bt2 − 4At+ 2B) sin t

y
(3)
p = (−Bt2 − 6At+ 6B) cos t+ (At2 − 6Bt− 6A) sin t

y
(4)
p = (At2 − 8Bt− 12A) cos t+ (Bt2 + 8At− 12B) sin t

Substitute yp into the equation, we have

y(4)p + 2y′′p + yp = 4 cos t− sin t

−8A cos t− 8B sin t = 4 cos t− sin t.

(Note that the coefficients of t2 cos t, t2 sin t, t cos t, t sin t will automatically be zero since r = ±i
are double roots of the characteristic equation.) Thus

A = −1

2
, B =

1

8
.

Therefore the general solution of the equation is

y(t) = c1 cos t+ c2 sin t+ c3t cos t+ c4t sin t− 1

2
t2 cos t+

1

8
t2 sin t.

�

Example 4.7.10. Find a particular solution of

y′′′ − 9y′ = t2 + 3 sin t+ e3t.

Solution: The roots of the characteristic equation are r = 0,±3. A particular solution is of the
form

yp(t) = A1t
3 +A2t

2 +A3t+B1 cos t+B2 sin t+ Cte3t.

Substituting into the equation, we have

6A1 − 9A3 − 18A2t− 27A1t
2 − 10B2 cos t+ 10B1 sin t+ 18Ce3t = t2 + 3 sin t+ e3t.

Thus

A1 = − 1

27
, A2 = 0, A3 = − 2

81
, B1 =

3

10
, B2 = 0, C =

1

18
.

A particular solution is

yp(t) = − 1

27
t3 − 2

81
t+

3

10
cos t+

1

18
te3t.

�
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Example 4.7.11. Determine the appropriate form for a particular solution of

y′′′ + 6y′′ + 12y′ + 8y = 4t− 3t2e−2t − t sin 3t.

Solution: The characteristic equation r3 + 6r2 + 12r+ 8 = 0 has one triple root r = −2. So the
complementary function is

yc = c1e
−2t + c2te

−2t + c3t
2e−2t.

A particular solution takes the form

yp = A1t+A0 + t3(B2t
2 +B1t+B0)e

−2t + (C1t+ C2) cos 3t+ (C3t+ C4) sin 3t.

�

Example 4.7.12. Determine the appropriate form for a particular solution of

y(4) + 4y′′ + 4y = 5et sin 2t− 2t cos 2t.

Solution: The characteristic equation r4 + 4r2 + 4 = 0 has two double roots r = ±2i. So the
complementary function is

yc = (c1t+ c2) cos 2t+ (c3t+ c4) sin 2t).

A particular solution takes the form

yp = et(A1 cos 2t+A2 sin 2t) + t2((B1t+B2) cos 2t+ (B3t+B4) sin 2t).

�
Method of variation of parameters

Theorem 4.7.13. Suppose y1, y2, · · · , yn are solutions of the homogeneous linear differential
equation

L[y] =
dny

dtn
+ pn−1(t)

dn−1y

dtn−1
· · ·+ p1(t)

dy

dt
+ p0(t)y = 0, on I.

Let W (t) be the Wronskian and Wk(t) be the determinant obtained from replacing the k-th column
of W (t) by the column (0, · · · , 0, 1)T . For any continuous function g(t) on I, the function

yp(t) =

n∑
k=1

yk(t)

∫ t

t0

g(s)Wk(s)

W (s)
ds,

is a particular solution to the non-homogeneous equation

L[y](t) = g(t).

Outline of proof. Let
yp(t) = v1y1 + v2y2 + · · ·+ vnyn.

To choose functions v1, v2, · · · , vn so that yp(t) is a solution to

L[y] = g,

we want them satisfy

v′1y1 + v′2y2 + · · · + v′nyn = 0
v′1y
′
1 + v′2y

′
2 + · · · + v′ny

′
n = 0

...
...

. . .
...

...

v′1y
(n−2)
1 + v′2y

(n−2)
2 + · · · + v′ny

(n−2)
n = 0

v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · · + v′ny

(n−1)
n = g

The result is obtained by solving the above system of equations. �
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Example 4.7.14. Find a particular solution of

y′′′ − 2y′′ + y′ − 2y = 5t.

Solution: The roots of the characteristic equation are r = 2,±i. A set of fundamental solutions
is given by 

y1 = e2t

y2 = cos t
y3 = sin t

The Wronskian is

W (t) =

∣∣∣∣∣∣
e2t cos t sin t
2e2t − sin t cos t
4e2t − cos t − sin t

∣∣∣∣∣∣ = 5e2t

Using variation of parameter, let

yp(t) = v1e
2t + v2 cos t+ v3 sin t,

where v1, v2, v3 satisfy 
v′1e

2t + v′2 cos t + v′3 sin t = 0
2v′1e

2t − v′2 sin t + v′3 cos t = 0
4v′1e

2t − v′2 cos t − v′3 sin t = 5t
.

Solving this system we get 
v′1 = te−2t

v′2 = t(2 sin t− cos t)
v′3 = −t(2 cos t+ sin t)

.

Integrating the equations gives
v1 = −2t+1

4 e−2t

v2 = −t(2 cos t+ sin t)− cos t+ 2 sin t
v3 = t(cos t− 2 sin t)− 2 cos t− sin t

.

Therefore

yp(t) = −2t+ 1

4
e−2te2t

+(−t(2 cos t+ sin t)− cos t+ 2 sin t) cos t

+(t(cos t− 2 sin t)− 2 cos t− sin t) sin t

= −5

4
(2t+ 1)

is a particular solution. �

Example 4.7.15. Find a particular solution of

y′′′ + y′ = sec2 t, t ∈ (−π/2, π/2).

Solution: The roots of the characteristic equation are r = 0,±i. A set of fundamental solutions
is given by 

y1 = 1
y2 = cos t
y3 = sin t

.
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The Wronskian is

W (t) =

∣∣∣∣∣∣
1 cos t sin t
0 − sin t cos t
0 − cos t − sin t

∣∣∣∣∣∣ = 1.

Using variation of parameter, let

yp(t) = v1 + v2 cos t+ v3 sin t,

where v1, v2, v3 satisfy 
v′1 + v′2 cos t + v′3 sin t = 0
− v′2 sin t + v′3 cos t = 0
− v′2 cos t − v′3 sin t = sec2 t

.

Solving this system we get 
v′1 = sec2 t
v′2 = − sec t
v′3 = − sec t tan t

.

Integrating the equations gives 
v1 = tan t
v2 = − ln | sec t+ tan t|
v3 = − sec t

.

Therefore

yp(t) = tan t− cos t ln | sec t+ tan t| − sec t sin t

= − cos t ln | sec t+ tan t|

is a particular solution. �

Exercise 4.7

1. Write down a suitable form yp(t) of a particular solution of the following nonhomogeneous
second order linear equations.

(a) y(3) + y′ = 1− 2 cos t

(b) y(3) − 2y′′ + 2y′ = t(1− et cos t)

(c) y(4) − 2y′′ + y = tet

(d) y(4) − 5y′′ + 4y = et − te2t

(e) y(4) + 2y′′ + y = t cos t

(f) y(5) + 2y(3) + 2y′′ = 2t2

(g) y(5) − y(3) = et − 4t2

2. Use the method of variation of parameters to find a particular solution of the following
nonhomogeneous linear equations.

(a) y(3) − y′ = t

(b) y(3) − 3y′′ + 4y = e2t
(c) y(3) − 2y′′ − y′ + 2y = e4t

(d) y(3) + y′ = tanx



5 Eigenvalues and eigenvectors

5.1 Eigenvalues and eigenvectors

Definition 5.1.1 (Eigenvalues and eigenvectors). Let A be an n×n matrix. A number λ, which
can be a complex number, is called an eigenvalue of the A if there exists a nonzero vector v,
which can be a complex vector, such that

Av = λv,

in which case the vector v is called an eigenvector of the matrix A associated with λ.

Example 5.1.2. Consider

A =

(
5 −6
2 −2

)
.

We have

A

(
2
1

)
=

(
5 −6
2 −2

)(
2
1

)
=

(
4
2

)
= 2

(
2
1

)
.

Thus λ = 2 is an eigenvalue of A and (2, 1)T is an eigenvector of A associated with the eigenvalue
λ = 2. We also have

A

(
3
2

)
=

(
5 −6
2 −2

)(
3
2

)
=

(
3
2

)
.

Thus λ = 1 is an eigenvalue of A and (3, 2)T is an eigenvector of A associated with the eigenvalue
λ = 1.

Remarks:

1. An eigenvalue may be zero but an eigenvector is by definition a nonzero vector.

2. If v1 and v2 are eigenvectors of A associated with eigenvalue λ, then for any scalars c1 and
c2, c1v1 + c2v2 is also an eigenvector of A associated with eigenvalue λ if it is non-zero.

3. If λ is an eigenvalue of an n× n matrix A, then the set of all eigenvectors associated with
eigenvalue λ together with the zero vector 0 form a vector subspace of Rn. It is called the
eigenspace of A associated with eigenvalue λ.

Definition 5.1.3 (Characteristic polynomial). Let A be an n × n matrix. The polynomial
function

p(x) = det(xI−A)

of degree n is called the characteristic polynomial of A. The det(xI−A) = 0 is a polynomial
equation of degree n which is called the characteristic equation of A.

Theorem 5.1.4. Let A be an n×n matrix. The following statements for scalar λ are equivalent.

1. λ is an eigenvalue of A.

2. The equation (λI−A)v = 0 has nontrivial solution for v.

3. Null(λI−A) 6= {0}.

4. The matrix λI−A is singular.

5. λ is a root of the characteristic equation det(xI−A) = 0
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To find the eigenvalues of a square matrix A, we may solve the characteristic equation det(xI−
A) = 0. For each eigenvalue λ of A, we may find an eigenvector of A associated with λ by
finding a non-trivial solution to (λI−A)v = 0.

Example 5.1.5. Find the eigenvalues and associated eigenvectors of the matrix

A =

(
3 2
3 −2

)
.

Solution: Solving the characteristic equation, we have

det(λI−A) = 0∣∣∣∣ λ− 3 −2
−3 λ+ 2

∣∣∣∣ = 0

λ2 − λ− 12 = 0

λ = 4,−3

For λ1 = 4,

(4I−A)v = 0(
1 −2
−3 6

)
v = 0

Thus v1 = (2, 1)T is an eigenvector associated with λ1 = 4.
For λ2 = −3,

(−3I−A)v = 0(
−6 −2
−3 −1

)
v = 0

Thus v2 = (1,−3)T is an eigenvector associated with λ2 = −3. �

Example 5.1.6. Find the eigenvalues and associated eigenvectors of the matrix

A =

(
0 8
−2 0

)
.

Solution: Solving the characteristic equation, we have∣∣∣∣ λ −8
2 λ

∣∣∣∣ = 0

λ2 + 16 = 0

λ = ±4i

For λ1 = 4i,

(4iI−A)v = 0(
4i −8
2 4i

)
v = 0

Thus v1 = (2, i)T is an eigenvector associated with λ1 = 4i.
For λ2 = −4i,

(−4iI−A)v = 0(
−4i −8

2 −4i

)
v = 0
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Thus v2 = (2,−i)T is an eigenvector associated with λ2 = −4i. (Note that λ2 = λ̄1 and v2 = v̄1

in this example.) �

Remark: For any square matrix A with real entries, the characteristic polynomial of A has real
coefficients. Thus if λ = ρ+µi, where ρ, µ ∈ R, is a complex eigenvalue of A, then its conjugate
λ̄ = ρ − µi is also an eigenvalue of A. Furthermore, if v = a + bi is an eigenvector associated
with complex eigenvalue λ, then v̄ = a− bi is an eigenvector associated with eigenvalue λ̄.

Example 5.1.7. Find the eigenvalues and a basis for each eigenspace of the matrix

A =

 2 −3 1
1 −2 1
1 −3 2

 .

Solution: Solving the characteristic equation, we have∣∣∣∣∣∣
λ− 2 3 −1
−1 λ+ 2 −1
−1 3 λ− 2

∣∣∣∣∣∣ = 0

λ(λ− 1)2 = 0

λ = 1, 1, 0

For λ1 = λ2 = 1,  −1 3 −1
−1 3 −1
−1 3 −1

v = 0

Thus {v1 = (3, 1, 0)T ,v2 = (−1, 0, 1)T } constitutes a basis for the eigenspace associated with
eigenvalue λ = 1. For λ3 = 0,  −2 3 −1

−1 2 −1
−1 3 −2

v = 0

Thus {v3 = (1, 1, 1)T } constitutes a basis for the eigenspace associated with eigenvalue λ = 0.�

In the above example, the characteristic equation of A has a root 1 of multiplicity two and a root
0 of multiplicity one. For eigenvalue λ = 1, there associates two linearly independent eigenvectors
and for λ = 0, there associates one linearly independent eigenvector. An important fact in linear
algebra is that in general, the number of linearly independent eigenvectors associated with an
eigenvalue λ is always less than or equal to the multiplicity of λ as a root of the characteristic
equation. A proof of this statement will be given in the next section. However the number of
linearly independent eigenvectors associated with an eigenvalue λ can be strictly less than the
multiplicity of λ as a root of the characteristic equation as shown by the following two examples.

Example 5.1.8. Find the eigenvalues and a basis for each eigenspace of the matrix

A =

(
2 3
0 2

)
.
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Solution: Solving the characteristic equation, we have∣∣∣∣ λ− 2 −3
0 λ− 2

∣∣∣∣ = 0

(λ− 2)2 = 0

λ = 2, 2

When λ = 2, (
0 −3
0 0

)
v = 0

Thus {v = (1, 0)T } constitutes a basis for the eigenspace associated with eigenvalue λ = 2. In
this example, λ = 2 is a root of multiplicity two of the characteristic equation but we call only
find one linearly independent eigenvector for λ = 2. �

Example 5.1.9. Find the eigenvalues and a basis for each eigenspace of the matrix

A =

 −1 1 0
−4 3 0
1 0 2

 .

Solution: Solving the characteristic equation, we have∣∣∣∣∣∣
λ+ 1 −1 0

4 λ− 3 0
−1 0 λ− 2

∣∣∣∣∣∣ = 0

(λ− 2)(λ− 1)2 = 0

λ = 2, 1, 1

For λ1 = 2,  3 −1 0
4 −1 0
−1 0 0

v = 0

Thus {v1 = (0, 0, 1)T } constitutes a basis for the eigenspace associated with eigenvalue λ = 2.
For λ2 = λ3 = 1,  2 −1 0

4 −2 0
1 0 1

v = 0

Thus {v2 = (−1,−2, 1)T } constitutes a basis for the eigenspace associated with eigenvalue λ = 1.
Note that here λ = 1 is a double root but we can only find one linearly independent eigenvector
associated with λ = 1. �

Exercise 5.1

1. Find the eigenvalues and a basis for each eigenspace of each of the following matrices.
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(a)

(
5 −6
3 −4

)
(b)

(
10 −9
6 −5

)
(c)

(
−2 −1
5 2

)
(d)

(
3 −1
1 1

)

(e)

 4 −5 1
1 0 −1
0 1 −1


(f)

 1 1 1
0 2 1
0 0 1


(g)

 −2 0 1
1 0 −1
0 1 −1



(h)

 3 6 −2
0 1 0
0 0 1


(i)

 1 0 0
1 2 0
−3 5 2


(j)

 −3 5 −5
3 −1 3
8 −8 10


2. Let A be a square matrix such that A2 = A. Show that if λ is an eigenvalue of A than
λ = 0 or 1.

3. Let A be a square matrix.

(a) Show that if λ is an eigenvalue of A, then λ is also an eigenvalue of AT .

(b) Show that A is non-singular if and only if 0 is not an eigenvalue of A.

(c) Show that if λ is an eigenvalue of A, then for any non-negative integer k, λk is an
eigenvalue of Ak.

(d) Show that if A is non-singular and λ is an eigenvalue (which is non-zero by (2)) of
A, then λ−1 is an eigenvalue of A−1.

4. Show that if A is an upper-triangular matrix, then λ is an eigenvalue of A if and only if
λ is equal to one of diagonal entries of A.

5.2 Diagonalization

Definition 5.2.1 (Similar matrices). Two n × n matrices A and B are said to be similar if
there exists an invertible (may be complex) matrix P such that

B = P−1AP.

Theorem 5.2.2. Similarity of square matrices is an equivalence relation, that is,

1. For any square matrix A, we have A is similar to A;

2. If A is similar to B, then B is similar to A;

3. If A is similar to B and B is similar to C, then A is similar to C.

Proof.

1. Since I is a non-singular matrix and A = I−1AI, we have A is similar to A.

2. If A is similar to B, then there exists non-singular matrix P such that B = P−1AP. Now
P−1 is a non-singular matrix and (P−1)−1 = P. There exists non-singular matrix P−1

such that (P−1)−1BP−1 = PBP−1 = A. Therefore B is similar to A.

3. If A is similar to B and B is similar to C, then there exists non-singular matrices P and
Q such that B = P−1AP and C = Q−1BQ. Now PQ is a non-singular matrix and
(PQ)−1 = Q−1P−1. There exists non-singular matrix PQ such that (PQ)−1A(PQ) =
Q−1(P−1AP)Q = Q−1BQ = C. Therefore A is similar to C.



Eigenvalues and eigenvectors 94

Theorem 5.2.3.

1. The only matrix similar to the zero matrix 0 is the zero matrix.

2. The only matrix similar to the identity matrix I is the identity matrix.

3. If A is similar to B, then aA is similar to aB for any real number a.

4. If A is similar to B, then Ak is similar to Bk for any non-negative integer k.

5. If A and B are similar non-singular matrices, then A−1 is similar to B−1.

6. If A is similar to B, then AT is similar to BT .

7. If A is similar to B, then det(A) = det(B).

8. If A is similar to B, then tr(A) = tr(B) where tr(A) = a11 + a22 + · · ·+ ann is the trace,
i.e., the sum of the entries in the diagonal, of A.

9. If A is similar to B, then A and B have the same characteristic equation.

Proof.

1. Suppose A is similar to 0, then there exists non-singular matrix P such that 0 = P−1AP.
Hence A = P0P−1 = 0.

2. Similar to (1) and is left as exercise.

3. Exercise.

4. If A is similar to B, then there exists non-singular matrix P such that B = P−1AP. We
have

Bk =

k copies︷ ︸︸ ︷
(P−1AP)(P−1AP) · · · (P−1AP)

= P−1A(PP−1)AP · · ·P−1A(PP−1)AP

= P−1AIAI · · · IAIAP

= P−1AkP

Therefore Ak is similar to Bk.

5. If A and B are similar non-singular matrices, then there exists non-singular matrix P such
that B = P−1AP. We have

B−1 = (P−1AP)−1

= P−1A−1(P−1)−1

= P−1A−1P

Therefore A−1 is similar to B−1.

6. Exercise.
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7. If A is similar to B, then there exists non-singular matrix P such that B = P−1AP. Thus
det(B) = det(P−1AP) = det(P−1) det(A) det(P) = det(A) since det(P−1) = det(P)−1.

8. If A is similar to B, then there exists non-singular matrix P such that B = P−1AP.
Thus tr(B) = tr((P−1A)P) = tr(P(P−1A)) = tr(A). (Note: It is well-known that
tr(PQ) = tr(QP) for any square matrices P and Q. But in general, it is not always true
that tr(PQR) = tr(QPR).)

9. Similar to (7) and is left as exercise.

Definition 5.2.4. An n×n matrix A is said to be diagonalizable if there exists a non-singular
(may be complex) matrix P such that

P−1AP = D

is a diagonal matrix. In this case we say that P diagonalizes A. In other words, A is diagonal-
izable if it is similar to a diagonal matrix.

Theorem 5.2.5. Let A be an n × n matrix. Then A is diagonalizable if and only if A has n
linearly independent eigenvectors.

Proof. Let P be an n× n matrix and write

P =
[

v1 v2 · · · vn
]
.

where v1,v2, · · · ,vn are the column vectors of P. First observe that P is non-singular if and
only if v1,v2, · · · ,vn are linearly independent (Theorem 3.3.13). Furthermore

P−1AP = D =


λ1

λ2
0

. . .

0 λn

 is a diagonal matrix.

⇔ AP = PD for some diagonal matrix D =


λ1

λ2
0

. . .

0 λn

.

⇔ A
[

v1 v2 · · · vn
]

=
[
λ1v1 λ2v2 · · · λnvn

]
.

⇔
[

Av1 Av2 · · · Avn
]

=
[
λ1v1 λ2v2 · · · λnvn

]
.

⇔ vk is an eigenvector of A associated with eigenvalue λk for k = 1, 2, · · · , n.

Therefore P diagonalizes A if and only if v1,v2, · · · ,vn are linearly independent eigenvectors
of A.

Example 5.2.6. Diagonalize the matrix

A =

(
3 2
3 −2

)
.
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Solution: We have seen in Example 5.1.5 that A has eigenvalues λ1 = 4 and λ2 = −3 associated
with linearly independent eigenvectors v1 = (2, 1)T and v2 = (1,−3)T respectively. Thus the
matrix

P =

(
2 1
1 −3

)
diagonalizes A and

P−1AP =

(
2 1
1 −3

)−1(
3 2
3 −2

)(
2 1
1 −3

)
=

(
4 0
0 −3

)
.

�

Example 5.2.7. Diagonalize the matrix

A =

(
0 8
−2 0

)
.

Solution: We have seen in Example 5.1.6 that A has eigenvalues λ1 = 4i and λ2 = −4i associated
with linearly independent eigenvectors v1 = (2, i)T and v2 = (2,−i)T respectively. Thus the
matrix

P =

(
2 2
i −i

)
diagonalizes A and

P−1AP =

(
4i 0
0 −4i

)
.

�

Example 5.2.8. We have seen in Example 5.1.7 that

A =

(
2 3
0 2

)
has only one linearly independent eigenvector. Therefore it is not diagonalizable.

Example 5.2.9. Diagonalize the matrix

A =

 2 −3 1
1 −2 1
1 −3 2

 .

Solution: We have seen in Example 5.1.6 that A has eigenvalues λ1 = λ2 = 1 and λ3 = 0. For
λ1 = λ2 = 1, there are two linearly independent eigenvectors v1 = (3, 1, 0)T and v2 = (−1, 0, 1)T .
For λ3 = 0, there associated one linearly independent eigenvector v3 = (1, 1, 1)T . The three
vectors v1,v2,v3 are linearly independent eigenvectors. Thus the matrix

P =

 3 −1 1
1 0 1
0 1 1
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diagonalizes A and

P−1AP =

 1 0 0
0 1 0
0 0 0

 .

�

Example 5.2.10. Show that the matrix

A =

(
1 1
0 1

)
is not diagonalizable.

Solution: One can show that there is at most one linearly independent eigenvector. Alternatively,
one can argue in the following way. The characteristic equation of A is (r−1)2 = 0. Thus λ = 1
is the only eigenvalue of A. Hence if A is diagonalizable by P, then P−1AP = I. But then
A = PIP−1 = I which leads to a contradiction. �

Theorem 5.2.11. Suppose that eigenvectors v1,v2, · · · ,vk are associated with the distinct
eigenvalues λ1, λ2, · · · , λk of a matrix A. Then v1,v2, · · · ,vk are linearly independent.

Proof. We prove the theorem by induction on k. The theorem is obviously true when k = 1.
Now assume that the theorem is true for any set of k − 1 eigenvectors. Suppose

c1v1 + c2v2 + · · ·+ ckvk = 0.

Multiplying A− λkI to the left on both sides, we have

c1(A− λkI)v1 + c2(A− λkI)v2 + · · ·+ ck−1(A− λkI)vk−1 + ck(A− λkI)vk = 0

c1(λ1 − λk)v1 + c2(λ2 − λk)v2 + · · ·+ ck−1(λk−1 − λk)vk−1 = 0

Note that (A − λkI)vk = 0 since vk is an eigenvector associated with λk. From the induction
hypothesis, v1,v2, · · · ,vk−1 are linearly independent. Thus

c1(λ1 − λk) = c2(λ2 − λk) = · · · = ck−1(λk−1 − λk) = 0.

Since λ1, λ2, · · · , λk are distinct, λ1 − λk, λ2 − λk, · · · , λk−1 − λk are all nonzero. Hence

c1 = c2 = · · · = ck−1 = 0.

It follows then that ck is also equal to zero because vk is a nonzero vector. Therefore v1,v2, · · · ,vk
are linearly independent.

The above theorem gives a sufficient condition for a matrix to be diagonalizable.

Theorem 5.2.12. If the n× n matrix A has n distinct eigenvalues, then it is diagonalizable.

Definition 5.2.13 (Algebraic and geometric multiplicity). Let A be a square matrix and λ be
an eigenvalue of A, in other words, λ is a root of the characteristic equation of A.

1. The algebraic multiplicity of λ is the multiplicity of λ being a root of the characteristic
equation of A. The algebraic multiplicity of λ is denoted by ma(λ).
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2. The geometric multiplicity of λ is the dimension of the eigenspace associated to eigen-
value λ, that is, the maximum number of linearly independent eigenvectors associated with
eigenvalue λ. The geometric multiplicity of λ is denoted by mg(λ).

We have the following important theorem concerning the algebraic multiplicity and geometric
multiplicity of an eigenvalue.

Theorem 5.2.14. Let A be an n× n matrix and λ be an eigenvalue of A. Then we have

1 ≤ mg(λ) ≤ ma(λ)

where mg(λ) and ma(λ) are the geometric and algebraic multiplicity of λ respectively. In other
words, the maximum number of linearly independent eigenvectors associated with λ is less than
or equal to the algebraic multiplicity of λ as a root of the characteristic equation of A.

Proof. Suppose there are k linearly independent eigenvectors v1,v2, · · · ,vk ∈ Rn of A asso-
ciated with λ. We are going to prove that the algebraic multiplicity of λ is at least k. Let
uk+1,uk+2, · · · ,un ∈ Rn be vectors such that v1,v2, · · · ,vk,uk+1,uk+2, · · · ,un constitute a
basis for Rn. Using these vectors as column vectors, the n× n matrix

P = [v1,v2, · · · ,vk,uk+1,uk+2, · · · ,un]

is non-singular (Theorem 3.3.13). Consider the matrix B = P−1AP which must be of the form

B =

(
λI C
0 D

)
where I is the k× k identity matrix, 0 is the (n− k)× k zero matrix, C is a k× (n− k) matrix
and D is an (n − k) × (n − k) matrix. Note that since A and B are similar, the characteristic
equation of A and B are the same (Theorem 5.2.3). Observe that

det(xI−B) =

∣∣∣∣ (x− λ)I C
0 xI−D

∣∣∣∣ = (x− λ)k det(xI−D)

We see that the algebraic multiplicity of λ as root of the characteristic equation of B is as least
k and therefore the algebraic multiplicity of λ as root of the characteristic equation of A is as
least k.

If the geometric multiplicity is equal to the algebraic multiplicity for each eigenvalue of A, then
A is diagonalizable.

Theorem 5.2.15. Let A be an n × n matrix and λ1, λ2, · · · , λk be the distinct roots of the
characteristic equation of A of multiplicity n1, n2, · · · , nk respectively. In other words, the char-
acteristic polynomial of A is

(x− λ1)n1(x− λ2)n2 · · · (x− λk)nk

Then A is diagonalizable if and only if for each 1 ≤ i ≤ k, there exists ni linearly independent
eigenvectors associated with eigenvalue λi.

Proof. Suppose for each eigenvalue λi, there exists ni linearly independent eigenvectors associ-
ated with eigenvalue λi. Putting all these eigenvectors together, we obtain a set of n eigenvectors
of A. Using the same argument in the proof of Theorem 5.2.11, one may prove that these n
eigenvectors are linearly independent. Therefore A is diagonalizable (Theorem 5.2.5).
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Suppose A is diagonalizable. Then there exists n linearly independent eigenvectors v1,v2, · · · ,vn
of A (Theorem 5.2.5). Among these vectors, at most ni of them are associated with λi for each
1 ≤ i ≤ k. Since n1 + n2 + · · · + nk = n, we must have exactly ni of them associated with λi
for each i. Therefore there are ni linearly independent eigenvectors associated with λi for each
i.

We conclude this section by giving three more theorems without proof.

Theorem 5.2.16. All eigenvalues of a symmetric matrix are real.

Theorem 5.2.17. Any symmetric matrix is diagonalizable (by orthogonal matrix).

Exercise 5.2

1. Diagonalize the following matrices.

(a)

(
1 3
4 2

)
(b)

(
3 −2
4 −1

)
(c)

(
5 −4
2 −1

)
(d)

 0 −1 0
0 0 −1
6 11 6


(e)

 3 −2 0
0 1 0
−4 4 1


(f)

 1 2 2
2 1 2
2 2 1


(g)

 7 −8 3
6 −7 3
2 −2 2


2. Show that that following matrices are not diagonalizable.

(a)

(
3 1
−1 1

)
(b)

 −1 1 0
−4 3 0
1 0 2

 (c)

 −3 3 −2
−7 6 −3
1 −1 2


3. Let A and B be non-singular matrices. Prove that if A is similar to B, then A−1 is similar

to B.

4. Suppose A is similar to B and C is similar to D. Explain whether it is always true that
AC is similar to BD.

5. Suppose A and B are similar matrices. Show that if λ is an eigenvalue of A, then λ is an
eigenvalue of B.

6. Let A and B be two n× n matrices. Show that tr(AB) = tr(BA). (Note: In general, it
is not always true that tr(ABC) = tr(BAC).)

7. Let A =

(
a b
c d

)
be a 2 × 2 matrix. Show that if (a − d)2 + 4bc 6= 0, then A is

diagonalizable.

8. Suppose P diagonalizes two matrices A and B simultaneously. Prove that AB = BA.

9. A square matrix A is said to be nilpotent if there exists positive integer k such that
Ak = 0. Prove that any non-zero nilpotent matrix is not diagonalizable.

10. Prove that if A is a non-singular matrix, then for any matrix B, we have AB is similar to
BA.

11. Show that there exists matrices A and B such that AB is not similar to BA.

12. Show that AB and BA have the same characteristic equation.
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5.3 Power of matrices

Let A be an n× n matrix and P be a matrix diagonalizes A, i.e.,

P−1AP = D

is a diagonal matrix. Then

Ak =
(
PDP−1

)k
= PDkP−1.

Example 5.3.1. Find A5 if

A =

(
3 2
3 −2

)
.

Solution: From Example 5.2.6,

P−1AP = D =

(
4 0
0 −3

)
where

P =

(
2 1
1 −3

)
.

Thus

A5 = PD5P−1

=

(
2 1
1 −3

)(
4 0
0 −3

)5(
2 1
1 −3

)−1
=

(
2 1
1 −3

)(
1024 0

0 −243

)
1

−7

(
−3 −1
−1 2

)
=

(
843 362
543 −62

)
�

Example 5.3.2. Find A5 if

A =

 4 −2 1
2 0 1
2 −2 3

 .

Solution: Diagonalizing A, we have

P−1AP = D =

 3 0 0
0 2 0
0 0 2


where

P =

 1 1 −1
1 1 0
1 0 2

 .
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Thus

A5 =

 1 1 −1
1 1 0
1 0 2

 3 0 0
0 2 0
0 0 2

5 1 1 −1
1 1 0
1 0 2

−1

=

 1 1 −1
1 1 0
1 0 2

 243 0 0
0 32 0
0 0 32

 2 −2 1
−2 3 −1
−1 1 0


=

 454 −422 211
422 −390 211
422 −422 243


�

Example 5.3.3. Consider a metropolitan area with a constant total population of 1 million
individuals. This area consists of a city and its suburbs, and we want to analyze the changing
urban and suburban populations. Let Ck denote the city population and Sk the suburban popu-
lation after k years. Suppose that each year 15% of the people in the city move to the suburbs,
whereas 10% of the people in the suburbs move to the city. Then it follows that{

Ck+1 = 0.85Ck + 0.1Sk
Sk+1 = 0.15Ck + 0.9Sk

Find the urban and suburban populations after a long time.

Solution: Let xk = (Ck, Sk)
T be the population vector after k years. Then

xk = Axk−1 = A2xk−2 = · · · = Akx0,

where

A =

(
0.85 0.1
0.15 0.9

)
.

Solving the characteristic equation, we have∣∣∣∣ λ− 0.85 −0.1
−0.15 λ− 0.9

∣∣∣∣ = 0

λ2 − 1.75λ+ 0.75 = 0

λ = 1, 0.75

Hence the eigenvalues are λ1 = 1 and λ2 = 0.75. By solving A − λI = 0, the associated
eigenvectors are v1 = (2, 3)T and v2 = (−1, 1)T respectively. Thus

P−1AP = D =

(
1 0
0 0.75

)
,

where

P =

(
2 −1
3 1

)
.
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When k is very large

Ak = PDkP−1

=

(
2 −1
3 1

)(
1 0
0 0.75

)k (
2 −1
3 1

)−1
=

(
2 −1
3 1

)(
1 0
0 0.75k

)
1

5

(
1 1
−3 2

)
' 1

5

(
2 −1
3 1

)(
1 0
0 0

)(
1 1
−3 2

)
=

1

5

(
2 3
2 3

)
Therefore

xk = Akx0

'
(

0.4 0.6
0.4 0.6

)(
C0

S0

)
= (C0 + S0)

(
0.4
0.6

)
=

(
0.4
0.6

)
That mean whatever the initial distribution of population is, the long-term distribution consists
of 40% in the city and 60% in the suburbs. �

An n×n matrix is called a stochastic matrix if it has nonnegative entries and the sum of the
elements in each column is one. A Markov process is a stochastic process having the property
that given the present state, future states are independent of the past states. A Markov process
can be described by a Morkov chain which consists of a sequence of vectors xk, k = 0, 1, 2, · · · ,
satisfying

xk = Axk−1 = A2xk−2 = · · · = Akx0,

for some stochastic matrix A. The vector xk is called the state vector and A is called the
transition matrix.

The PageRank algorithm was developed by Larry Page and Sergey Brin and is used to rank
the web sites in the Google search engine. It is a probability distribution used to represent the
likelihood that a person randomly clicking links will arrive at any particular page. The linkage of
the web sites in the web can be represented by a linkage matrix A. The probability distribution
of a person to arrive the web sites are given by Akx0 for a sufficiently large k and is independent
of the initial distribution x0.

Example 5.3.4 (PageRank). Consider a small web consisting of three pages P , Q and R, where
page P links to the pages Q and R, page Q links to page R and page R links to page P and Q.
Assume that a person has a probability of 0.5 to stay on each page and the probability of going
to other pages are evenly distributed to the pages which are linked to it. Find the page rank of
the three web pages.

R

�� ��
P

OO

// Q

__
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Solution: Let pk, qk and rk be the number of people arrive the web pages P , Q and R respectively
after k iteration. Then  pk

qk
rk

 =

 0.5 0 0.25
0.25 0.5 0.25
0.25 0.5 0.5

 pk−1
qk−1
rk−1

 .

Thus
xk = Axk−1 = · · · = Akx0,

where

A =

 0.5 0 0.25
0.25 0.5 0.25
0.25 0.5 0.5


is the linkage matrix and

x0 =

 p0
q0
r0


is the initial state. Solving the characteristic equation of A, we have∣∣∣∣∣∣

λ− 0.5 0 −0.25
−0.25 λ− 0.5 −0.25
−0.25 −0.5 λ− 0.5

∣∣∣∣∣∣ = 0

λ3 − 1.5λ2 + 0.5625λ− 0.0625 = 0

(λ− 1)(λ− 0.25)2 = 0

λ = 1 or 0.25

For λ1 = 1, we solve  −0.5 0 0.25
0.25 −0.5 0.25
0.25 0.5 −0.5

v = 0

and v1 = (2, 3, 4)T is an eigenvector of A associated with λ1 = 1.
For λ2 = λ3 = 0.25, we solve  0.25 0 0.25

0.25 0.25 0.25
0.25 0.5 0.25

v = 0

and there is only one linearly independent eigenvector v2 = (1, 0,−1)T associated with 0.25.
Thus A is not diagonalizable. However we may take

P =

 2 1 4
3 0 −4
4 −1 0


and

P−1AP = J =

 1 0 0
0 0.25 1
0 0 0.25

 .



Eigenvalues and eigenvectors 104

(J is called the Jordan normal form of A.) When k is sufficiently large, we have

Ak = PJkP−1

=

 2 1 4
3 0 −4
4 −1 0

 1 0 0
0 0.25 1
0 0 0.25

k 2 1 4
3 0 −4
4 −1 0

−1

'

 2 1 4
3 0 −4
4 −1 0

 1 0 0
0 0 0
0 0 0

 1/9 1/9 1/9
4/9 4/9 −5/9
1/12 −1/6 1/12


=

 2/9 2/9 2/9
3/9 3/9 3/9
4/9 4/9 4/9


Thus after sufficiently many iteration, the number of people arrive the web pages are given by

Akx0 '

 2/9 2/9 2/9
3/9 3/9 3/9
4/9 4/9 4/9

 p0
q0
r0

 = (p0 + q0 + r0)

 2/9
3/9
4/9

 .

Note that the ratio does not depend on the initial state. The PageRank of the web pages P , Q
and R are 2/9, 3/9 and 4/9 respectively. �

Example 5.3.5 (Fibonacci sequence). The Fibonacci sequence is defined by the recurrence
relation {

Fk+2 = Fk+1 + Fk, for k ≥ 0

F0 = 0, F1 = 1.

Find the general term of the Fibonacci sequence.

Solution: The recurrence relation can be written as(
Fk+2

Fk+1

)
=

(
1 1
1 0

)(
Fk+1

Fk

)
.

for k ≥ 0. If we let

A =

(
1 1
1 0

)
and xk =

(
Fk+1

Fk

)
,

then 
xk+1 = Axk, for k ≥ 0

x0 =

(
1

0

)
.

It follows that
xk = Axk−1 = A2xk−2 = · · · = Akx0.

To find Ak, we diagonalize A and obtain(
1+
√
5

2
1−
√
5

2
1 1

)−1(
1 1
1 0

)(
1+
√
5

2
1−
√
5

2
1 1

)
=

(
1+
√
5

2 0

0 1−
√
5

2

)
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Hence

Ak =

(
1+
√
5

2
1−
√
5

2
1 1

)
(
1+
√
5

2

)k
0

0
(
1−
√
5

2

)k
( 1+

√
5

2
1−
√
5

2
1 1

)−1

=
1√
5


(
1+
√
5

2

)k+1
−
(
1−
√
5

2

)k+1 (
1+
√
5

2

)k
−
(
1−
√
5

2

)k(
1+
√
5

2

)k
−
(
1−
√
5

2

)k (
1+
√
5

2

)k−1
−
(
1−
√
5

2

)k−1


Now

xk = Akx0 =
1√
5


(
1+
√
5

2

)k+1
−
(
1−
√
5

2

)k+1(
1+
√
5

2

)k
−
(
1−
√
5

2

)k
 ,

we have

Fk =
1√
5

(1 +
√

5

2

)k
−

(
1−
√

5

2

)k .

�
Note that we have

lim
k→∞

Fk+1

Fk
= lim

k→∞

((1 +
√

5)/2)k+1 − ((1−
√

5)/2)k+1

((1 +
√

5)/2)k − ((1−
√

5)/2)k
=

1 +
√

5

2

which links the Fibonacci sequence with the number 1+
√
5

2 ≈ 1.61803 which is called the golden
ratio.

Exercise 5.3

1. Compute A5 where A is the given matrix.

(a)

(
5 −6
3 −4

)
(b)

(
6 −6
4 −4

)
(c)

(
4 −3
2 −1

)
(d)

(
1 −5
1 −1

)

(e)

 1 2 −1
2 4 −2
3 6 −3


(f)

 1 −2 1
0 1 0
0 −2 2


(g)

 4 −3 1
2 −1 1
0 0 2


2. Suppose A is a stochastic matrix, that is A is a square matric with non-negative entries

and the sum of entries in each column is one.

(a) Prove that λ = 1 is an eigenvalue of A.

(b) Prove that if all entries of A are positive, then the eigenspace associated with λ = 1
is of dimension 1.

5.4 Cayley-Hamilton theorem

Let p(x) = anx
n+an−1x

n−1 + · · ·+a1x+a0 be a polynomial. We may consider p(x) as a matrix
valued function with square matrix input and write p(A) = anA

n + an−1A
n−1 + · · ·+ a1A + a0

for square matrix A.
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Definition 5.4.1. Let A be an n × n matrix. The minimal polynomial of A is a nonzero
polynomial m(x) of minimum degree with leading coefficient 1 satisfying m(A) = 0.

One may ask whether there always exists a nonzero polynomial p(x) with p(A) = 0 for every
square matrix A. This is true because we have the Cayley-Hamilton theorem which is one of
the most notable theorems in linear algebra.

Theorem 5.4.2 (Cayley-Hamilton theorem). Let A be an n×n matrix and p(x) = det(xI−A)
be its characteristic polynomial. Then p(A) = 0. Moreover, we have m(x) divides p(x) where
m(x) is the minimal polynomial of A.

Proof. Let B = xI−A and

p(x) = det(B) = xn + an−1x
n−1 + · · ·+ a1x+ a0

be the characteristic polynomial of A. Consider B as an n×n matrix whose entries are polyno-
mial in x. Then the adjoint adj(B) of B is an n× n matrix with polynomials of degree at most
n− 1 as entries. We may also consider adj(B) as a polynomial of degree n− 1 in x with matrix
coefficients

adj(B) = Bn−1x
n−1 + · · ·+ B1x+ B0

where the coefficients Bi are n× n constant matrices. On one hand, we have

det(B)I = (xn + an−1x
n−1 + · · ·+ a1x+ a0)I

= Ixn + an−1Ix
n−1 + · · ·+ a1Ix+ a0I

On the other hand, we have

Badj(B) = (xI−A)(Bn−1x
n−1 + · · ·+ B1x+ B0)

= Bn−1x
n + (Bn−2 −ABn−1)x

n−1 + · · ·+ (B0 −AB1)x−AB0

By Theorem 2.4.18, we have
det(B)I = Badj(B)

By comparing the coefficients of the above equality, we get

I = Bn−1

an−1I = Bn−2 −ABn−1
...

a1I = B0 −AB1

a0I = −AB0

If we multiply the first equation by An, the second by An−1, and so on, and the last one by I,
and then add up the resulting equations, we obtain

p(A) = An + an−1A
n−1 + · · ·+ a1A + a0I

= AnBn−1 + (An−1Bn−2 −AnBn−1) + · · ·+ (AB0 −A2B1)−AB0

= 0.

For the second statement, by division algorithm there exists polynomials q(x) and r(x) such
that

p(x) = q(x)m(x) + r(x)
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with r(x) ≡ 0 or deg(r(x)) < deg(m(x)). Suppose r(x) is a non-zero polynomial. Let k be a non-
zero constant such that kr(x) has leading coefficient 1. Now kr(A) = kp(A)− kq(A)m(A) = 0.
This contradicts the minimality of m(x). Hence r(x) ≡ 0 which implies that m(x) divides
p(x).

Let A be an n×n matrix and p(x) be the characteristic polynomial of A. Since the eigenvalues
of A are exactly the zeros of its characteristic polynomial (Theorem 5.1.4), we have p(x) =
(x − λ1)n1(x − λ2)n2 · · · (x − λk)nk where λ1, λ2, · · · , λk are the eigenvalues of A. The Cayley-
Hamilton theorem (Theorem 5.4.2) gives us a way to find the minimal polynomial from the
characteristic polynomial.

Theorem 5.4.3. Let A be an n× n matrix and

p(x) = (x− λ1)n1(x− λ2)n2 · · · (x− λk)nk

be the characteristic polynomial of A, where λ1, λ2, · · · , λk are distinct eigenvalues of A. Then
the minimal polynomial of A is of the form

m(x) = (x− λ1)m1(x− λ2)m2 · · · (x− λk)mk

where 1 ≤ mi ≤ ni for any i = 1, 2, · · · , k.

Proof. By Cayley-Hamilton theorem (Theorem 5.4.2), the minimal polynomial m(x) divides the
characteristic polynomial p(x) and thus

m(x) = (x− λ1)m1(x− λ2)m2 · · · (x− λk)mk

where mi ≤ ni for any i = 1, 2, · · · , k. It remains to prove mi 6= 0 for any i. Now suppose mi = 0
for some i. Since λi is an eigenvalue of A, there exists eigenvector vi such that Avi = λivi.
Then

m(A) = 0

m(A)vi = 0

(A− λ1I)m1 · · · (A− λi−1I)mi−1(A− λi+1I)mi+1 · · · (A− λkI)mkvi = 0

(λi − λ1)m1 · · · (λi − λi−1)mi−1(λi − λi+1)
mi+1 · · · (λi − λk)mkvi = 0

which is a contradiction since λ1, λ2, · · · , λk are distinct and vi is nonzero. Therefore we proved
that mi ≥ 1 for any i = 1, 2, · · · , k and the proof of the theorem is complete.

Example 5.4.4. Let

A =

 2 −3 1
1 −2 1
1 −3 2


Find the minimal polynomial of A.

Solution: The characteristic polynomial of A is

p(x) = x(x− 1)2.

Thus the minimal polynomial is either

x(x− 1) or x(x− 1)2.



Eigenvalues and eigenvectors 108

By direct computation

A(A− I) =

 2 −3 1
1 −2 1
1 −3 2

 1 −3 1
1 −3 1
1 −3 1

 = 0.

Hence the minimal polynomial of A is m(x) = x(x− 1). �

Minimal polynomial can be used to characterize diagonalizable matrices.

Theorem 5.4.5. Let A be a square matrix and λ1, λ2, · · · , λk be distinct eigenvalues of A. Let

m(x) = (x− λ1)m1(x− λ2)m2 · · · (x− λk)mk

be the minimal polynomial of A. Then A is diagonlizable if and only if mi = 1 for any i =
1, 2, · · · , k. In other words, a square matrix is diagonlizable if and only if its minimal polynomial
is a product of distinct linear factors.

Proof. Suppose A is an n×n matrix which is diagonalizable. Then there exists (Theorem 5.2.5)
n linearly independent eigenvectors v1,v2, · · · ,vn of A in Rn. Now for each j = 1, 2, · · · , n, we
have Avj = λivj for some i and hence

(A− λ1I) · · · (A− λiI) · · · (A− λkI)vj = 0

Since v1,v2, · · · ,vn are linearly independent, they constitute a basis (Theorem 3.4.7) for Rn.
Thus any vector in Rn is a linear combination of v1,v2, · · · ,vn which implies that

(A− λ1I)(A− λ2I) · · · (A− λkI)v = 0

for any v ∈ Rn. It follows that we must have

(A− λ1I)(A− λ2I) · · · (A− λkI) = 0

(Note that by Theorem 5.4.3 we always have mi ≥ 1 for each i.) Therefore the minimal
polynomial of A is

m(x) = (x− λ1)(x− λ2) · · · (x− λk)

On the other hand, suppose the minimal polynomial of A is

m(x) = (x− λ1)(x− λ2) · · · (x− λk)

Then
(A− λ1I)(A− λ2I) · · · (A− λkI) = 0

For each i = 1, 2, · · · , k, let ni = nullity(A−λiI) be the nullity of A−λiI and let {vi1,vi2, · · · ,vini}
be a basis for the eigenspace Null(A− λiI) of A associated with eigenvalue λi. Then using the
same argument in the proof of Theorem 5.2.11, we have

v11, · · · ,v1n1 ,v21, · · · ,v2n2 , · · · ,vk1, · · · ,vknk

are linearly independent vectors in Rn. This implies that

n1 + n2 + · · ·+ nk ≤ n

Moreover by Theorem 3.5.10, we have

n = nullity((A− λ1I)(A− λ2I) · · · (A− λkI)) ≤ n1 + n2 + · · ·+ nk
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Combining the two inequalities, we have

n1 + n2 + · · ·+ nk = n

Hence there exists n linearly independent eigenvectors of A. Therefore A is diagonalizable by
Theorem 5.2.5.

Example 5.4.6. Let

A =

 4 −2 1
2 0 1
2 −2 3


Find the minimal polynomial of A. Then express A4 and A−1 as a polynomial in A of smallest
degree.

Solution: The characteristic polynomial is

p(x) = (x− 3)(x− 2)2 = x3 − 7x2 + 16x− 12

The minimal polynomial of A is either

(x− 3)(x− 2) or (x− 3)(x− 2)2

Now

(A− 3I)(A− 2I) =

 1 −2 1
2 −3 1
2 −2 0

 2 −2 1
2 −2 1
2 −2 1

 = 0

Thus the minimal polynomial of A is m(x) = (x− 3)(x− 2) = x2 − 5x+ 6. Now

m(A) = A2 − 5A + 6I = 0

Hence

A2 = 5A− 6I

A3 = 5A2 − 6A

= 5(5A− 6I)− 6A

= 19A− 30I

A4 = 19A2 − 30A

= 19(5A− 6I)− 30A

= 65A− 114I

To find A−1, we have

A2 − 5A + 6I = 0

A− 5I + 6A−1 = 0

A−1 = −1

6
A +

5

6
I

�

Example 5.4.7. Let

A =

 4 0 4
0 2 −1
−1 0 0


Find the minimal polynomial of A. Then express A4 and A−1 as a polynomial in A of smallest
degree.
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Solution: The characteristic polynomial is

p(x) = (x− 2)3

The minimal polynomial of A is either

x− 2 or (x− 2)2 or (x− 2)3

Now

(A− 2I)2 =

 0 0 0
1 0 2
0 0 0

 6= 0

Thus the minimal polynomial of A is m(x) = (x− 2)3 = x3 − 6x2 + 12x− 8. Now

m(A) = A3 − 6A2 + 12A− 8I = 0

Hence

A3 = 6A2 − 12A + 8I

A4 = 6A3 − 12A2 + 8A

= 6(6A2 − 12A + 8I)− 12A2 + 8A

= 24A2 − 64A + 48I

To find A−1, we have

A3 − 6A2 + 12A− 8I = 0

A2 − 6A + 12I− 8A−1 = 0

A−1 =
1

8
A2 − 3

4
A +

3

2
I

�

Exercise 5.4

1. Find the minimal polynomial of A where A is the matrix given below. Then express A4

and A−1 as a polynomial in A of smallest degree.

(a)

(
5 −4
3 −2

)
(b)

(
3 −2
2 −1

)
(c)

(
2 5
−1 0

)
(d)

 −1 1 0
−4 3 0
1 0 2


(e)

 3 1 1
2 4 2
−1 −1 1


(f)

 0 1 0
−1 2 0
−1 1 1


(g)

 11 −6 −2
20 −11 −4
0 0 1


2. Prove that similar matrices have the same minimal polynomial.

3. Let A be a square matrix such that Ak = I for some positive integer k. Prove that A is
diagonalizable.

4. Prove that if A is a non-singular matrix such that A2 is diagonalizable, then A is diago-
nalizable.



6 Systems of first order linear equations

6.1 Basic properties of systems of first order linear equations

In this chapter, we study systems of first order linear equations
x′1 = p11(t)x1 + p12(t)x2 + · · · + p1n(t)xn + g1(t)
x′2 = p21(t)x1 + p22(t)x2 + · · · + p2n(t)xn + g2(t)
...

...
...

. . .
...

...
x′n = pn1(t)x1 + pn2(t)x2 + · · · + pnn(t)xn + gn(t)

.

where pij , gi(t), i, j = 1, 2, · · · , n, are continuous functions. We can also write the system into
matrix form

x′ = P(t)x + g(t), t ∈ I,

where

x =


x1
x2
...
xn

 , P(t) =


p11(t) p12(t) · · · p1n(t)
p21(t) p22(t) · · · p2n(t)

...
...

. . .
...

pn1(t) pn2(t) · · · pnn(t)

 , g(t) =


g1(t)
g2(t)

...
gn(t)

 .

An n-th order linear equaition can be transformed to a system of n first order linear equations.
Here is an example for second order equation.

Example 6.1.1. We can use the substitution x1(t) = y(t) and x2(t) = y′(t) to transform the
second order differential equation

y′′ + p(t)y′ + q(t)y = g(t),

to a system of linear equations{
x′1 = x2
x′2 = −q(t)x1 − p(t)x2 + g(t)

.

A fundamental theorem for system of first order linear equations says that a solution always
exists and is unique for any given initial condition.

Theorem 6.1.2 (Existence and uniqueness theorem). If all the functions {pij} and {gi} are
continuous on an open interval I, then for any t0 ∈ I and x0 ∈ Rn, there exists a unique solution
to the initial value problem {

x′ = P(t)x + g(t), t ∈ I,
x(t0) = x0.

Definition 6.1.3. Let x(1),x(2), · · · ,x(n) be a set of n solutions to the system x′ = P(t)x and
let

X(t) = [ x(1) x(2) · · · x(n) ],

be the n×n matrix valued function with column vectors x(1),x(2), · · · ,x(n). Then the Wronskian
of the set of n solutions is defined as

W [x(1),x(2), · · · ,x(n)](t) = det(X(t)).
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The solutions x(1),x(2), · · · ,x(n) are linearly independent at a point t0 ∈ I if and only if
W [x(1),x(2), · · · ,x(n)](t0) 6= 0. If W [x(1),x(2), · · · ,x(n)](t0) 6= 0 for some t0 ∈ I, then we say
that x(1),x(2), · · · ,x(n) form a fundamental set of solutions.

Theorem 6.1.4 (Abel’s theorem for system of differential equation). Let x(1)(t),x(2)(t), · · · ,x(n)(t)
be solutions to the system

x′(t) = P(t)x(t), t ∈ I.

and
W (t) = W [x(1),x(2), · · · ,x(n)](t)

be the Wronskian. Then W (t) satisfies the first order linear equation

W ′(t) = tr(P)(t)W (t)

for some constant c where tr(P)(t) = p11(t)+p22(t)+· · ·+pnn(t) is the trace of P(t). Furthermore
W (t) is either identically zero on I or else never zero on I.

Proof. Differentiating the Wronskian W (t) = W [x(1),x(2), · · · ,x(n)](t) with respect to t, we have

W ′ =
d

dt
det
[
x(1) x(2) · · · x(n)

]
=

n∑
i=1

det

[
x(1) x(2) · · · d

dt
x(i) · · ·x(n)

]

=
n∑
i=1

det
[
x(1) x(2) · · · Px(i) · · ·x(n)

]
= tr(P) det

[
x(1) x(2) · · · x(n)

]
= tr(P)W

Here we have used the identity that for any vectors x1,x2, · · · ,xn ∈ Rn and any n × n matrix
A, we have

n∑
i=1

det [x1 x2 · · · Axi · · ·xn] = tr(A) det [x1 x2 · · ·xn]

By solving the above first order linear equation for W (t), we have

W (t) = c exp

(∫
tr(P)(t)dt

)
for some constant c. Now W (t) is identically equal to 0 if c is zero and W (t) is never zero when
c is non-zero.

The above theorem implies that if x(1),x(2), · · · ,x(n) form a fundamental set of solutions, i.e.
W [x(1),x(2), · · · ,x(n)](t0) 6= 0 for some t0 ∈ I, then W [x(1),x(2), · · · ,x(n)](t) 6= 0 for any t ∈ I
and consequently x(1),x(2), · · · ,x(n)](t) are linearly independent for any t ∈ I.

Theorem 6.1.5. Suppose x(1),x(2), · · · ,x(n) form a fundamental set of solutions to the system

x′ = P(t)x, t ∈ I.

Then each solution x to the system can be expressed as a linear combination

x = c1x
(1) + c2x

(2) + · · ·+ cnx
(n)

for constants c1, c2, · · · , cn in exactly one way.
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Proof. Take an arbitrary t0 ∈ I. Since x(1),x(2), · · · ,x(n) form a fundamental set of solutions,
we have x(1)(t0),x

(2)(t0), · · · ,x(n)(t0) are linearly independent. Thus there exists uniqueness
real numbers c1, c2, · · · , cn such that

x(t0) = c1x
(1)(t0) + c2x

(2)(t0) + · · ·+ cnx
(n)(t0)

Now the vector valued function

x− (c1x
(1) + c2x

(2) + · · ·+ cnx
(n))

is also a solution to the system and its value at t0 is the zero vector 0. By uniqueness of solution
(Theorem 6.1.2), this vector valued functions is identically equal to zero vector. Therefore
x = c1x

(1)+c2x
(2)+ · · ·+cnx(n). This expression is unique because c1, c2, · · · , cn are unique.

Exercise 6.1

1. Let P(t) be a continuous matrix function on an interval I and x(1),x(2), · · · ,x(n) be solu-
tions to the homogeneous system

x′ = P(t)x, t ∈ I.

Suppose there exists t0 ∈ I such that x(1)(t0),x
(2)(t0), · · · ,x(n)(t0) are linearly indepen-

dent. Show that for any t ∈ I, the vectors x(1)(t),x(2)(t), · · · ,x(n)(t) are linearly indepen-
dent in Rn.

2. Suppose x(0)(t) = (x1(t), x2(t), · · · , xn(t))T is a solution to the homogeneous system

x′ = P(t)x, t ∈ I.

Suppose x(0)(t0) = 0 for some t0 ∈ I. Show that x(0)(t) = 0 for any t ∈ I.

3. Let x(1)(t),x(2)(t), · · · ,x(n)(t) be differentiable vector valued functions and

X(t) = [ x(1) x(2) · · · x(n) ],

be the matrix valued function with column vectors x(1),x(2), · · · ,x(n). Show that

d

dt
det(X(t)) =

n∑
i=1

det

[
x(1) x(2) · · · d

dt
x(i) · · ·x(n)

]

4. Prove that for any vectors x1,x2, · · · ,xn ∈ Rn and any n× n matrix A, we have

n∑
i=1

det [x1 x2 · · · Axi · · ·xn] = tr(A) det [x1 x2 · · ·xn]

6.2 Homogeneous linear systems with constant coefficients

From now on we will consider homogeneous linear systems with constant coefficients

x′ = Ax,

where A is a constant n× n matrix. Suppose the system has a solution of the form

x = eλtξ,
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where ξ is a non-zero constant vector. Then

x′ = λeλtξ.

Put it into the system, we have
(λI−A)ξ = 0.

Since ξ 6= 0, λ is an eigenvalue of A and ξ is an eigenvector associated with λ. Conversely if λ
is an eigenvalue of A and ξ is an eigenvector associated with λ, then x = eλtξ gives a solution
to the system.

Example 6.2.1. Solve

x′ =

(
1 1
4 1

)
x.

Solution: Solving the characteristic equation∣∣∣∣ λ− 1 −1
−4 λ− 1

∣∣∣∣ = 0

(λ− 1)2 − 4 = 0

λ− 1 = ±2

λ = 3,−1

we find that the eigenvalues of the coefficient matrix are λ1 = 3 and λ2 = −1 and the associated
eigenvectors are

ξ(1) =

(
1
2

)
, ξ(2) =

(
1
−2

)
respectively. Therefore the general solution is

x = c1e
3t

(
1
2

)
+ c2e

−t
(

1
−2

)
.

�

Example 6.2.2. Solve

x′ =

(
−3

√
2√

2 −2

)
x.

Solution: Solving the characteristic equation∣∣∣∣ λ+ 3 −
√

2

−
√

2 λ+ 2

∣∣∣∣ = 0

(λ+ 3)(λ+ 2)− 2 = 0

λ2 + 5λ+ 4 = ±2

λ = −4,−1

we find that the eigenvalues of the coefficient matrix are λ1 = −4 and λ2 = −1 and the associated
eigenvectors are

ξ(1) =

(
−
√

2
1

)
, ξ(2) =

(
1√
2

)
respectively. Therefore the general solution is

x = c1e
−4t
(
−
√

2
1

)
+ c2e

−t
(

1√
2

)
.
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�
When the characteristic equation has repeated root, the above method can still be used if
there are n linearly independent eigenvectors, in other words when the coefficient matrix A is
diagonalizable.

Example 6.2.3. Solve

x′ =

 0 1 1
1 0 1
1 1 0

x.

Solution: Solving the characteristic equation, we find that the eigenvalues of the coefficient
matrix are λ1 = 2 and λ2 = λ3 = −1.
For λ1 = 2, the associated eigenvector is

ξ(1) =

 1
1
1

 .

For the repeated root λ2 = λ3 = −1, there are two linearly independent eigenvectors

ξ(2) =

 1
0
−1

 , ξ(3) =

 0
1
−1

 .

Therefore the general solution is

x = c1e
2t

 1
1
1

+ c2e
−t

 1
0
−1

+ c3e
−t

 0
1
−1

 .

�
If λ = α+βi, α−βi, β > 0 are complex eigenvalues of A and a + bi, a−bi are the associated
eigenvectors respectively, then the real part and imaginary part of

e(α+βi)t(a + bi) = eαt(cosβt+ i sinβt)(a + bi)

= eαt(a cosβt− b sinβt) + eαt(b cosβt+ a sinβt)i

give two linearly independent solutions to the system. We have

Theorem 6.2.4. Suppose λ = α + βi, α − βi, β > 0 are complex eigenvalues of A and
a + bi, a− bi are the associated eigenvectors respectively, then{

x(1) = eαt(a cosβt− b sinβt),

x(2) = eαt(b cosβt+ a sinβt),

are two linear independent solutions to x′ = Ax.

Example 6.2.5. Solve

x′ =

(
−3 −2
4 1

)
x
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Solution: Solving the characteristic equation∣∣∣∣ λ+ 3 2
4 λ− 1

∣∣∣∣ = 0

(λ+ 3)(λ− 1) + 8 = 0

λ2 + 2λ+ 5 = 0

(λ+ 1)2 + 4 = 0

λ = −1± 2i

For λ1 = −1 + 2i,

A− λ1I =

(
−2 + 2i −2

4 2− 2i

)
An associated eigenvector is

ξ1 =

(
−1

1 + i

)
=

(
−1
1

)
+

(
0
1

)
i

Moreover an eigenvector associated with λ2 = −1− 2i is

ξ1 =

(
−1

1− i

)
=

(
−1
1

)
−
(

0
1

)
i

Therefore 
x(1) = e−t

[(
−1
1

)
cos 2t−

(
0
1

)
sin 2t

]
= e−t

(
− cos 2t

cos 2t− sin 2t

)
,

x(2) = e−t
[(

0
1

)
cos 2t+

(
−1
1

)
sin 2t

]
= e−t

(
− sin 2t

cos 2t+ sin 2t

)
,

are two linearly independent solutions and the general solution is

x = c1e
−t
(

− cos 2t
cos 2t− sin 2t

)
+ c2e

−t
(

− sin 2t
cos 2t+ sin 2t

)
= e−t

(
−c1 cos 2t− c2 sin 2t

(c1 + c2) cos 2t+ (c2 − c1) sin 2t

)
.

�

Example 6.2.6. Two masses m1 and m2 are attached to each other and to outside walls by
three springs with spring constants k1, k2 and k3 in the straight-line horizontal fashion. Suppose
that m1 = 2, m2 = 9/4, k1 = 1, k2 = 3 and k3 = 15/4 Find the displacement of the masses x1
and x3 after time t with the initial conditions x1(0) = 6, x′1(0) = −6, x2(0) = 4 and x′2(0) = 8.

Solution: The equation of motion of the system is{
m1x

′′
1 = −(k1 + k2)x1 + k2x2,

m2x
′′
2 = k2x1 − (k1 + k3)x2.

Let y1 = x1, y2 = x2, y3 = x′1 and y4 = x′2. Then the equation is transformed to

y′ =


0 0 1 0
0 0 0 1
−2 3/2 0 0
4/3 −3 0 0

y = Ay.
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The characteristic equation is ∣∣∣∣∣∣∣∣
−λ 0 1 0
0 −λ 0 1
−2 3/2 −λ 0
4/3 −3 0 −λ

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
0 0 1 0
0 0 0 1

−λ2 − 2 3/2 −λ 0
4/3 −λ2 − 3 0 −λ

∣∣∣∣∣∣∣∣ = 0

(λ2 + 2)(λ2 + 3)− 2 = 0

λ4 + 5λ2 + 4 = 0

(λ2 + 1)(λ2 + 4) = 0

The four eigenvalues are λ1 = i, λ2 = −i, λ3 = 2i and λ4 = −2i. The associated eigenvectors
are

ξ(1) =


3
2
3i
2i

 , ξ(2) =


3
2
−3i
−2i

 , ξ(3) =


3
−4
6i
−8i

 , ξ(4) =


3
−4
−6i
8i

 .

From real and imaginary parts of

eλ1tξ(1) =


3
2
3i
2i

 (cos t+ i sin t)

=


3 cos t
2 cos t
−3 sin t
−2 sin t

+


3 sin t
2 sin t
3 cos t
2 cos t

 i

and

eλ3tξ(3) =


3
−4
6i
−8i

 (cos 2t+ i sin 2t)

=


3 cos 2t
−4 cos 2t
−6 sin 2t
8 sin 2t

+


3 sin 2t
−4 sin 2t
6 cos 2t
−8 cos 2t

 i,

the general solution to the system is

y = c1


3 cos t
2 cos t
−3 sin t
−2 sin t

+ c2


3 sin t
2 sin t
3 cos t
2 cos t

+ c3


3 cos 2t
−4 cos 2t
−6 sin 2t
8 sin 2t

+ c4


3 sin 2t
−4 sin 2t
6 cos 2t
−8 cos 2t

 .
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From the initial conditions, we have
3 0 3 0
2 0 −4 0
0 3 0 6
0 2 0 −8




c1
c2
c3
c4

 =


6
4
−6
8




c1
c2
c3
c4

 =


2
0
0
−1

 .

Therefore {
x1 = 6 cos t− 3 sin 2t
x2 = 4 cos t+ 4 sin 2t.

�

Exercise 6.2

1. Find the general solutions to the following systems of differential equations.

(a)

{
x′1 = x1 + 2x2

x′2 = 2x1 + x2

(b)

{
x′1 = 2x1 + 3x2

x′2 = 2x1 + x2

(c)

{
x′1 = x1 − 5x2

x′2 = x1 − x2

(d)

{
x′1 = 5x1 − 9x2

x′2 = 2x1 − x2

(e)


x′1 = 4x1 + x2 + 4x3

x′2 = x1 + 7x2 + x3

x′3 = 4x1 + x2 + 4x3

(f)


x′1 = 4x1 + x2 + x3

x′2 = x1 + 4x2 + x3

x′3 = x1 + x2 + 4x3

(g)


x′1 = 2x1 + x2 − x3
x′2 = −4x1 − 3x2 − x3
x′3 = 4x1 + 4x2 + 2x3

(h)


x′1 = 2x1 + 2x2 + x3

x′2 = x1 + 3x2 + x3

x′3 = x1 + 2x2 + 2x3

2. Solve the following initial value problem.

(a)


x′1 = 3x1 + 4x2

x′2 = 3x1 + 2x2

x1(0) = x2(0) = 1

(b)


x′1 = 9x1 + 5x2

x′2 = −6x1 − 2x2

x1(0) = 1, x2(0) = 0

(c)


x′1 = x1 − 2x2

x′2 = 2x1 + x2

x1(0) = 0, x2(0) = 4

(d)


x′1 = 3x1 + x3

x′2 = 9x1 − x2 + 2x3

x′3 = −9x1 + 4x2 − x3
x1(0) = x2(0) = 0, x3(0) = 17

3. Solve x′ = Ax for the given matrix A.
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(a) A =

(
1 2
3 0

)

(b) A =

(
1 −1
5 −1

)
(c) A =

 2 −3 3
4 −5 3
4 −4 2


(d) A =

 4 −1 −1
1 2 −1
1 −1 2


6.3 Repeated eigenvalues

Consider the system

x′ = Ax, where A =

(
1 −1
1 3

)
.

The characteristic equation of A is ∣∣∣∣ λ− 1 1
−1 λ− 3

∣∣∣∣ = 0

λ2 − 4λ+ 4 = 0

(λ− 2)2 = 0

It has a root λ = 2 of multiplicity ma = 2. However, the set of all eigenvectors associated with
λ = 2 is spanned by one vector

ξ =

(
1
−1

)
.

In other words, the geometric multiplicity λ = 2 is mg = 1. So the geometric multiplicity is
smaller than the algebraic multiplicity. We know that

x(1) = eλtξ =

(
e2t

−e2t
)

is a solution to the system. However we do not have sufficient number of linearly independent
eigenvectors to write down two linearly independent solutions to the system. How do we find
another solution to form a fundamental set of solutions?

Based on the procedure used for higher order linear equations, it may be natural to attempt to
find a second solution of the form

x = te2tξ.

Substituting this into the equation reads

d

dt
te2tξ = Ate2tξ

2te2tξ + e2tξ = te2tAξ

e2tξ = te2t(A− 2I)ξ

e2tξ = 0

which has no non-zero solution for eigenvector ξ. To overcome this problem, we try another
substitution

x = te2tξ + e2tη,

where η is a vector to be determined. Then the equation x′ = Ax reads

2te2tξ + e2t(ξ + 2η) = A(te2tξ + e2tη)

e2tξ = e2t(A− 2I)η

ξ = (A− 2I)η



Systems of first order linear equations 120

Therefore if we take η such that ξ = (A−2I)η is an eigenvector, then x = te2tξ+e2tη is another
solution to the system. Note that η satisfies{

(A− λI)η 6= 0
(A− λI)2η = 0

A vector satisfying these two equations is called a generalized eigenvector of rank 2 associ-
ated with eigenvalue λ. Back to our example, if we take

η =

(
1
0

)
Then 

(A− 2I)η =

(
−1 −1

1 1

)(
1

0

)
=

(
−1

1

)
6= 0

(A− 2I)2η =

(
−1 −1

1 1

)(
−1

1

)
= 0

So η is a generalized eigenvector of rank 2. Then

x(2) = te2tξ + e2tη = te2t(A− 2I)η + e2tη = te2t
(
−1
1

)
+ e2t

(
1
0

)
is a solution to the system and the general solution is

x = c1x
(1) + c2x

(2)

= c1e
2t

(
1
−1

)
+ c2

(
te2t

(
−1
1

)
+ e2t

(
1
0

))
= e2t

(
c1 + c2 − c2t
−c1 + c2t

)
.

In the above example, we see how generalized eigenvectors can to used to write down more
solutions when the coefficient matrix of the system is not diagonalizable.

Definition 6.3.1 (Generalized eigenvector). Let A be a square matrix, λ be an eigenvalue of A
and k be a positive integer. A non-zero vector η is called a generalized eigenvector of rank
k associated with eigenvalue λ if {

(A− λI)k−1η 6= 0,
(A− λI)kη = 0.

Note that a vector is a generalized eigenvector of rank 1 if and only if it is an ordinary eigen-
vector.

Theorem 6.3.2. Let A be a square matrix and η be a generalized eigenvector of rank k associated
with eigenvalue λ. Let 

η0 = η,
η1 = (A− λI)η,
η2 = (A− λI)2η,

...
ηk−1 = (A− λI)k−1η,
ηk = (A− λI)kη = 0.

Then
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1. For 0 ≤ i ≤ k − 1, we have ηi is a generalized eigenvector of rank k − i associated with
eigenvalue λ.

2. The vectors η, η1, η2, · · · , ηk−1 are linearly independent.

Proof. It is easy to see that ηi = (A− λI)iη satisfies{
(A− λI)k−i−1ηi = (A− λI)k−1η = ηk−1 6= 0,
(A− λI)k−iηi = (A− λI)kη = ηk = 0

and the first statement follows. We prove the second statement by induction on k. The theorem
is obvious when k = 1 since η is non-zero. Assume that the theorem is true for rank of η
small than k. Suppose η is a generalized eigenvector of rank k associated with eigenvalue λ and
c0, c1, · · · , ck−1 are scalars such that

c0η + c1η1 + · · ·+ ck−2ηk−2 + ck−1ηk−1 = 0.

Multiplying both sides from the left by A− λI, we have

c0η1 + c1η2 + · · ·+ ck−2ηk−1 = 0.

Here we used ηk = (A− λI)ηk−1 = 0. Now η1 is a generalized eigenvector of rank k − 1 by the
first statement. Thus by induction hypothesis, we have η1, η2, · · · , ηk−1 are linearly independent
and hence

c0 = c1 = · · · = ck−2 = 0.

Combining the first equality gives ck−1ηk−1 = 0 which implies ck−1 = 0 since ηk−1 is non-zero.
We conclude that η, η1, η2, · · · , ηk−1 are linearly independent.

A generalized eigenvector of rank k can be used to write down k linearly independent eigenvectors
for the system.

Theorem 6.3.3. Suppose λ is an eigenvalue of a n× n matrix A and η is a generalized eigen-
vector of rank k associated with λ. For i = 0, 1, 2, · · · , k − 1, define

ηi = (A− λI)iη

Then 

x(1) = eλtηk−1
x(2) = eλt(ηk−2 + tηk−1)

x(3) = eλt(ηk−3 + tηk−2 +
t2

2
ηk−1)

...

x(k) = eλt(η + tη1 +
t2

2
η2 + · · ·+ tk−2

(k − 2)!
ηk−2 +

tk−1

(k − 1)!
ηk−1)

are linearly independent solutions to the system

x′ = Ax.

Proof. It is left for the reader to check that the solutions are linearly independent. It suffices to
prove that x(k) is a solution to the system. Observe that for any 0 ≤ i ≤ k − 1,

Aηi = ληi + (A− λI)ηi

= ληi + ηi+1.
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Thus

dx(k)

dt

=
d

dt

(
eλt(η + tη1 +

t2

2
η2 + · · ·+ tk−1

(k − 1)!
ηk−1)

)
= eλt

(
λη + (1 + λt)η1 + (t+

λt2

2
)η2 + · · ·+ (

tk−2

(k − 2)!
+

λtk−1

(k − 1)!
)ηk−1

)
= eλt

(
(λη + η1) + t(λη1 + η2) +

t2

2
(λη2 + η3) + · · ·+ tk−2

(k − 2)!
(ληk−2 + ηk−1) +

tk−1

(k − 1)!
ληk−1

)
= eλt

(
Aη + tAη1 +

t2

2
Aη2 + · · ·+ tk−2

(k − 2)!
Aηk−2 +

tk−1

(k − 1)!
Aηk−1

)
= Aeλt

(
η + tη1 +

t2

2
η2 + · · ·+ tk−2

(k − 2)!
ηk−2 +

tk−1

(k − 1)!
ηk−1

)
= Ax(k)

Example 6.3.4. Solve

x′ =

(
1 −3
3 7

)
x.

Solution: The characteristic equation of the coefficient matrix A is∣∣∣∣ λ− 1 3
−3 λ− 7

∣∣∣∣ = 0

(λ− 4)2 = 0.

We find that λ = 4 is double root and the eigenspace associated with λ = 4 is of dimension 1
and is spanned by (1,−1)T . Thus

x(1) = e4t
(

1
−1

)
is a solution. To find another solution which is not a multiple of x(1), we need to find a generalized
eigenvector of rank 2. First we calculate

A− 4I =

(
−3 −3
3 3

)
.

Now we if take

η =

(
1
0

)
,

then η satisfies  η1 = (A− 4I)η =

(
−3
3

)
6= 0,

η2 = (A− 4I)2η = 0.

Thus η is a generalized eigenvector of rank 2. Hence

x(2) = eλt(η + tη1)

= e4t
((

1
0

)
+ t

(
−3
3

))
= e4t

(
1− 3t

3t

)
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is another solution to the system. Therefore the general solution is

x = c1e
4t

(
1
−1

)
+ c2e

4t

(
1− 3t

3t

)
= e4t

(
c1 + c2 − 3c2t
−c1 + 3c2t

)
�

Example 6.3.5. Solve

x′ =

(
7 1
−4 3

)
x.

Solution: The characteristic equation of the coefficient matrix A is∣∣∣∣ λ− 7 −1
4 λ− 3

∣∣∣∣ = 0

(λ− 5)2 = 0.

We find that λ = 5 is double root and the eigenspace associated with λ = 5 is of dimension 1
and is spanned by (1,−2)T . Thus

x(1) = e5t
(

1
−2

)
is a solution. To find the second solution, we calculate

A− 5I =

(
2 1
−4 −2

)
.

Now we if take

η =

(
1
0

)
,

then η satisfies 
η1 = (A− 5I)η =

(
2
−4

)
6= 0,

η2 = (A− 5I)2η = (A− 5I)

(
2
−4

)
= 0.

Thus η is a generalized eigenvector of rank 2. Hence

x(2) = eλt(η + tη1)

= e5t
((

1
0

)
+ t

(
2
−4

))
= e5t

(
1 + 2t
−4t

)
is another solution to the system. Therefore the general solution is

x = c1e
5t

(
1
−2

)
+ c2e

5t

(
1 + 2t
−4t

)
= e5t

(
c1 + c2 + 2c2t
−2c1 − 4c2t

)
�
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Example 6.3.6. Solve

x′ =

 0 1 2
−5 −3 −7
1 0 0

x.

Solution: The characteristic equation of the coefficient matrix A is∣∣∣∣∣∣
λ −1 −2
5 λ+ 3 7
−1 0 λ

∣∣∣∣∣∣ = 0

(λ+ 1)3 = 0.

Thus A has an eigenvalue λ = −1 of multiplicity 3. By considering

A + I =

 1 1 2
−5 −2 −7
1 0 1


we see that the associated eigenspace is of dimension 1 and is spanned by (1, 1,−1)T . We need
to find a generalized eigenvector of rank 3, that is, a vector η such that{

(A + I)2η 6= 0
(A + I)3η = 0

Note that by Cayley-Hamilton Theorem, we have (A+I)3 = 0. Thus the condition (A+I)3η = 0
is automatic. We need to find η which satisfies the first condition. Now we take η = (1, 0, 0)T ,
then 

η1 = (A + I)η =

 1
−5
1

 6= 0,

η2 = (A + I)2η =

 −2
−2
2

 6= 0.

(One may verify that (A + I)3η = 0 though it is automatic.) Therefore ξ is a generalized
eigenvector of rank 3 associated with λ = −1. Hence

x(1) = eλtη2 = e−t

 −2
−2
2


x(2) = eλt(η1 + tη2) = e−t

 1− 2t
−5− 2t
1 + 2t


x(3) = eλt(η + tη1 + t2

2 η2) = e−t

 1 + t− t2
−5t− t2
t+ t2


form a fundamental set of solutions to the system. �

Example 6.3.7. Solve

x′ =

 0 1 −2
8 −1 6
7 −3 8

x.
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Solution: The characteristic equation of the coefficient matrix A∣∣∣∣∣∣
λ −1 2
−8 λ+ 1 −6
−7 3 λ− 8

∣∣∣∣∣∣ = 0

(λ− 3)(λ− 2)2 = 0

has a simple root λ1 = 3 and a double root λ2 = λ3 = 2. The eigenspace associated with the
simple root λ1 = 3 is of dimension 1 and is spanned by (−1, 1, 2)T . The eigenspace associated
with the double root λ2 = λ3 = 2 is of dimension 1 and is spanned by (0, 2, 1)T . We obtain two
linearly independent solutions 

x(1) = e3t

 −1
1
2


x(2) = e2t

 0
2
1

 .

To find the third solution, we need to find a generalized eigenvector of rank 2 associated with
the double root λ2 = λ3 = 2. The null space of

(A− 2I)2 =

 −2 1 −2
8 −3 6
7 −3 6

2

=

 −2 1 −2
2 −1 2
4 −2 4


is spanned by (0, 2, 1)T and (1, 0,−1)T . One may check that (0, 2, 1)T is an ordinary eigenvector.
Now 

(A− 2I)

 1

0

−1

 =

 0

2

1

 6= 0

(A− 2I)2

 1

0

−1

 =

 −2 1 −2

8 −3 6

7 −3 6


 0

2

1

 = 0

Thus (1, 0,−1)T is a generalized eigenvector of rank 2 associated with λ = 2. Let
η =

 1
0
−1


η1 = (A− 2I)η =

 0
2
1

 .

We obtain the third solution

x(3) = eλt(η + tη1) = e2t

 1
0
−1

+ t

 0
2
1

 = e2t

 1
2t
−1 + t


Therefore the general solution is

x = c1e
3t

 −1
1
2

+ c2e
2t

 0
2
1

+ c3e
2t

 1
2t
−1 + t

 .
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�

Exercise 6.3

1. Find the general solution to the system x′ = Ax for the given matrix A.

(a) A =

(
1 2
−2 −3

)
(b) A =

(
−2 1
−1 −4

)
(c) A =

(
3 −1
1 1

)

(d) A =

 −3 0 −4
−1 −1 −1
1 0 1


(e) A =

 −1 0 1
0 1 −4
0 1 −3



(f) A =

 1 0 0
−2 −2 −3
2 3 4


(g) A =

 3 −1 −3
1 1 −3
0 0 2


(h) A =

 3 1 −1
−1 2 1
1 1 1



6.4 Matrix exponential

Let A be an n× n matrix. We are going to define eA. This cannot be interpreted as ‘e to the
power A’ because we do not know how to define raising to the power of a matrix. However the
exponential function is defined by

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

and the right hand side is defined when x is a square matrix. This inspires us to make the
following definition.

Definition 6.4.1 (Matrix exponential). Let A be an n× n matrix. The matrix exponential
of A is defined as

exp(A) =
∞∑
k=0

Ak

k!
= I + A +

1

2!
A2 +

1

3!
A3 + · · ·

The matrix exponential of A may also be denoted by eA.

For the purpose of solving system of differential equations, it is helpful to consider matrix valued
function

exp(At) =
∞∑
k=0

Aktk

k!
= I + At+

1

2!
A2t2 +

1

3!
A3t3 + · · ·

for constant square matrix A and real variable t. It is not difficult to calculate exp(At) if A is
diagonalizable.

Theorem 6.4.2. Suppose

D =


λ1

λ2
0

. . .

0 λn
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is a diagonal matrix. Then

exp(Dt) =


eλ1t

eλ2t 0
. . .

0 eλnt

 .

Moreover, for any n×n matrix A, if there exists non-singular matrix P such that P−1AP = D
is a diagonal matrix. Then

exp(At) = P exp(Dt)P−1.

Example 6.4.3. Find exp(At) where

A =

(
4 2
3 −1

)
.

Solution: Diagonalizing A, we have(
2 1
1 −3

)−1(
4 2
3 −1

)(
2 1
1 −3

)
=

(
5 0
0 −2

)
.

Therefore

exp(At) =

(
2 1
1 −3

)(
e5t 0
0 e−2t

)(
2 1
1 −3

)−1
=

(
2 1
1 −3

)(
e5t 0
0 e−2t

)
1

7

(
3 1
1 −2

)
=

1

7

(
e−2t + 6e5t −2e−2t + 2e5t

−3e−2t + 3e5t 6e−2t + e5t

)
�

Theorem 6.4.4. Suppose there exists positive integer k such that Ak = 0, then

exp(At) = I + At+
1

2!
A2t2 +

1

3!
A3t3 + · · ·+ 1

(k − 1)!
Ak−1tk−1

Proof. It follows easily from the fact that Al = 0 for all l ≥ k.

Example 6.4.5. Find exp(At) where

A =

 0 1 3
0 0 2
0 0 0

 .

Solution: First compute

A2 =

 0 0 2
0 0 0
0 0 0

 and A3 =

 0 0 0
0 0 0
0 0 0

 .
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Therefore

exp(At) = I + At+
1

2
A2t2

=

 1 0 0
0 1 0
0 0 1

+ t

 0 1 3
0 0 2
0 0 0

+
t2

2

 0 0 2
0 0 0
0 0 0


=

 1 t 3t+ 2t2

0 1 2t
0 0 1

 .

�

Theorem 6.4.6. Let A be an n× n matrix. Then

d

dt
exp(At) = A exp(At)

Proof.

d

dt
exp(At) =

d

dt

(
I + At+

1

2!
A2t2 +

1

3!
A3t3 + · · ·

)
= 0 + A +

1

2!
A2(2t) +

1

3!
A3(3t2) + · · ·

= A + A2t+
1

2!
A3t2 + · · ·

= A

(
I + At+

1

2!
A2t2 + · · ·

)
= A exp(At)

The above theorem implies that the column vectors of exp(At) satisfies the system of first order
linear differential equations x′ = Ax.

Theorem 6.4.7. Let A be an n× n matrix and write exp(At) = [x1(t) x2(t) · · · xn(t)], which
means x1(t),x2(t), · · · ,xn(t) are the column vectors of exp(At). Then x1(t),x2(t), · · · ,xn(t)
are solutions to the system x′ = Ax.

Proof. By Theorem 6.4.6, we have

d

dt
exp(At) = A exp(At)

d

dt
[x1(t) x2(t) · · · xn(t)] = A [x1(t) x2(t) · · · xn(t)][
x′1(t) x′2(t) · · · x′n(t)

]
= [Ax1(t) Ax2(t) · · · Axn(t)]

Therefore x′k = Axk for k = 1, 2, · · · , n.

Theorem 6.4.8 (Properties of matrix exponential). Let A and B be two n × n matrices and
a, b be any scalars. Then the following statements hold.

1. exp(0) = I
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2. exp((a+ b)At) = exp(aAt) exp(bAt)

3. exp(−At) = (exp(At))−1

4. If AB = BA, then exp((A + B)t) = exp(At) exp(Bt).

5. For any non-singular matrix P, we have exp(P−1APt) = P−1 exp(At)P.

6. det(exp(At)) = etr(At). (tr(At) = (a11 + a22 + · · ·+ ann)t is the trace of At.)

Proof. 1. exp(0) = I + 0 +
1

2!
02 +

1

3!
03 + · · · = I

2.

exp((a+ b)At) =
∞∑
k=0

(a+ b)kAktk

k!

=
∞∑
k=0

(
k∑
i=0

k!aibk−i

i!(k − i)!

)
Aktk

k!

=
∞∑
k=0

k∑
i=0

aibk−iAktk

i!(k − i)!

=
∞∑
i=0

∞∑
j=0

aibjAi+jti+j

i!j!

=
∞∑
i=0

aiAiti

i!

∞∑
j=0

bjAjtj

j!

= exp(aAt) exp(bAt)

Here we have changed the order of summation of an infinite series in the fourth line and
we can do so because the exponential series is absolutely convergent.

3. From the first and second parts, we have exp(At) exp(−At) = exp((t− t)A) = exp(0) = I.
Thus exp(−At) = (exp(At))−1.

4.

exp(t(A + B)) =

∞∑
k=0

(A + B)ktk

k!

=

∞∑
k=0

(
k∑
i=0

k!AiBk−i

i!(k − i)!

)
tk

k!
(We used AB = BA)

=

∞∑
k=0

k∑
i=0

AiBk−itk

i!(k − i)!

=

∞∑
i=0

∞∑
j=0

AiBjti+j

i!j!
(We changed the order of summation)

=
∞∑
i=0

Aiti

i!

∞∑
j=0

Bjtj

j!

= exp(At) exp(Bt)
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5.

exp(P−1APt) = I + P−1APt+
1

2!
(P−1AP)2t2 +

1

3!
(P−1AP)3t3 + · · ·

= P−1IP + P−1(At)P + P−1
A2t2

2!
P + P−1

A3t3

3!
P + · · ·

= P−1
(

I + At+
A2t2

2!
+

A3t3

3!
+ · · ·

)
P

= P−1 exp(At)P

6. Write exp(At) = [x1 x2 · · · xn], which means x1,x2, · · · ,xn are the column vectors of
exp(At). By Theorem 6.4.7, xk is solution to x′ = Ax for k = 1, 2, · · · , n. Now the
Wronskian of x1,x2, · · · ,xn is

W (t) = det[x1 x2 · · · xn] = det(exp(At))

Observe that W (0) = det(exp(0)) = det(I) = 1. Moreover by Abel’s theorem for system
of differential equations (Theorem 6.1.4), W (t) satisfies the first order linear equation
W ′(t) = tr(A)W (t). By solving the initial value problem{

W ′ = tr(A)W

W (0) = 1

we conclude that det(exp(At)) is equal to W (t) = etr(A)t.

The assumption AB = BA is necessary in (4) of the above theorem as explained in the following
example. Let

A =

(
1 0
0 0

)
and B =

(
0 1
0 0

)
Then AB 6= BA. Now

exp((A + B)t) = exp

((
1 1
0 0

)
t

)
=

(
et et − 1
0 1

)
One the other hand

exp(At) =

(
et 0
0 1

)
exp(Bt) = I + Bt =

(
1 t
0 1

)
and

exp(At) exp(Bt) =

(
et 0
0 1

)(
1 t
0 1

)
=

(
et tet

0 1

)
6= exp((A + B)t)

Matrix exponential can be used to find the solution of an initial value problem.

Theorem 6.4.9. The unique solution to the initial value problem{
x′ = Ax

x(0) = x0

is
x(t) = exp(At)x0
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Proof. For x(t) = exp(At)x0, we have

x′(t) =
d

dt
exp(At)x0 = A exp(At)x0 = Ax(t)

and
x′(0) = exp(0)x0 = Ix0 = x0

Therefore x(t) = exp(At)x0 is the solution to the initial value problem.

Example 6.4.10. Solve the initial value problem{
x′ = Ax
x(0) = x0

where

A =

(
5 4
−8 −7

)
and x0 =

(
2
−1

)
Solution: Solving the characteristic equation∣∣∣∣ λ− 5 −4

8 λ+ 7

∣∣∣∣ = 0

λ2 + 2λ− 3 = 0

λ = 1,−3

For λ1 = 1, an associated eigenvector is

ξ1 =

(
1
−1

)
For λ2 = −3, an associated eigenvector is

ξ2 =

(
1
−2

)
Thus the matrix

P = [ξ1 ξ2] =

(
1 1
−1 −2

)
diagonalizes A and we have

P−1AP = D =

(
1 0
0 −3

)
Hence

exp(At) = P exp(Dt)P−1

=

(
1 1
−1 −2

)(
et 0
0 e−3t

)(
1 1
−1 −2

)−1
=

(
et e−3t

−et −2e−3t

)(
2 1
−1 −1

)
=

(
2et − e−3t et − e−3t
−2et + 2e−3t −et + 2e−3t

)
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Therefore the solution to the initial problem is

x = exp(At)x0

=

(
2et − e−3t et − e−3t
−2et + 2e−3t −et + 2e−3t

)(
2
−1

)
=

(
3et − e−3t
−3et + 2e−3t

)
�

Exercise 6.4

1. Find exp(At) where A is the following matrix.

(a)

(
1 3
4 2

)
(b)

(
5 −4
2 −1

)
(c)

(
6 −6
4 −4

)
(d)

(
0 2
−2 0

)
(e)

(
0 3
0 0

)

(f)

 1 1 1
2 1 −1
−8 −5 −3



(g)

 0 1 0
0 0 1
0 0 0



(h)

 0 −4 1
0 0 3
0 0 0


2. Solve the system x′ = Ax with initial condition x(0) = x0 for given A and x0.

(a) A =

(
2 5
−1 −4

)
; x0 =

(
1
−5

)
(b) A =

(
1 2
3 2

)
; x0 =

(
4
1

)

(c) A =

 −1 −2 −2
1 2 1
−1 −1 0

; x0 =

 3
0
−1


(d) A =

 0 1 0
0 0 −2
0 0 0

; x0 =

 1
1
−2


3. Let A be a 2× 2 matrix. Suppose the eigenvalues of A are r = λ± µi, with λ ∈ R, µ > 0.

Let

J =
A− λI

µ
, where I is the identity matrix.

(a) Show that J2 = −I.

(b) Show that exp(At) = eλt(I cosµt+ J sinµt).

(c) Use the result in (b), or otherwise, to find exp(At) where A the following matrix.

(i)

(
2 −5
1 −2

)
(ii)

(
3 −2
4 −1

)
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6.5 Jordan normal forms

When a matrix is not diagonalizable, its matrix exponential can be calculated using Jordan
normal form.

Definition 6.5.1. An n× n matrix J is called a Jordan matrix if it is of the form

J =


B1

B2
0

. . .

0 Bm

 ,

where each Bi is of the form either

λiI =


λi

λi
0

. . .

0 λi

 or


λi 1

λi
. . .
0

. . . 1
0 λi


Each Bi is called a Jordan block of J.

Note that a diagonal matrix is a Jordan matrix. So Jordan matrix is a generalization of diagonal
matrix. The matrix exponential of a diagonal matrix is easy to calculate (Theorem 6.4.2). The
matrix exponential of a Jordan matrix can be calculated with a slightly harder effort.

Theorem 6.5.2. Let

J =


B1

B2
0

. . .

0 Bm


be a Jordan matrix. Then

exp(Jt) =


exp(B1t)

exp(B2t)
0

. . .

0 exp(Bmt)


where

exp(Bit) =



eλit


1

1 0
. . .

0 1

 if Bi =


λi

λi
0

. . .

0 λi



eλit



1 t t2

2 · · · tk

k!

1 t · · · tk−1

(k−1)!
. . .

. . .
...

. . . t
0 1


if Bi =


λi 1

λi
. . .
0

. . . 1
0 λi
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Proof. Using the property exp(A + B) = exp(A) exp(B) if AB = BA, it suffices to prove the
formula for exp(Bit). When Bi = λiI, it is obvious that exp(It) = eλitI. Finally we have

exp




λi 1

λi
. . .
0

. . . 1
0 λi

 t

 = exp




λit 0

λit
. . .
0

. . . 0
0 λit

+


0 t

0
. . .
0

. . . t
0 0




= exp


λit 0

λit
. . .
0

. . . 0
0 λit

 exp


0 t

0
. . .
0

. . . t
0 0



= eλit



1 t t2

2 · · · tn

n!

1 t · · · tn−1

(n−1)!
. . .

. . .
...

. . . t
0 1


.

The second equality used again the property exp(A + B) = exp(A) exp(B) if AB = BA and
the third equality used the fact that for k × k matrix

N =


0 1

0
. . .
0

. . . 1
0 0


we have

Nk+1 = 0

and hence

exp(Nt) = I + Nt+
1

2!
N2t2 + · · ·+ 1

k!
Nktk

Example 6.5.3. Find exp(Jt) where J is the following Jordan matrix.

1.

(
4 1
0 4

)

2.

 −3 1 0
0 −3 1
0 0 −3



3.

 2 0 0
0 −1 1
0 0 −1


Solution:

1. exp(Jt) = e4t
(

1 t
0 1

)
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2. exp(Jt) = e−3t

 1 t t2

2
0 1 t
0 0 1



3. exp(Jt) =

 e2t 0 0
0 e−t t
0 0 e−t


�

Diagonalizable matrix is a matrix similar to a diagonal matrix. It can be proved that any matrix
is similar to a Jordan normal matrix.

Definition 6.5.4 (Jordan normal form). Let A be an n × n matrix. If J is a Jordan matrix
similar to A, then J is called3 the Jordan normal form of A.

To diagonalize an n × n matrix, we need to find n linearly independent eigenvectors. To find
the Jordan normal form, we need to find generalized eigenvectors. Recall that a generalized
eigenvector of rank k associated with eigenvalue λ is a vector such that{

(A− λI)k−1η 6= 0,
(A− λI)kη = 0.

A vector is a generalized eigenvector of rank 1 if and only if it is an ordinary eigenvector. If η
is a generalized eigenvector of rank k > 1, then ηi = (A − λI)iη is a generalized eigenvector of
rank k− i for i = 1, 2, · · · , k− 1. In particular, ηk−1 = (A− λI)k−1η is an ordinary eigenvector.

Theorem 6.5.5. Let A be an n× n matrix. Then there exists non-singular matrix

Q = [ ηn ηn−1 · · · η2 η1 ],

where ηi, i = 1, 2, · · · , n, are column vectors of Q, such that the following statements hold.

1. For any i = 1, 2, · · · , n, the vector ηi is a generalized eigenvector of A.

2. If ηi is a generalized eigenvector of rank k > 1 associated with eigenvalue λi, then

ηi+1 = (A− λiI)ηi

In this case ηi+1 is a generalized eigenvector of rank k− 1 associated with the same eigen-
value λi.

Furthermore, if Q is a non-singular matrix which satisfies the above conditions, then

J = Q−1AQ

is the Jordan normal form of A.

Note that the Jordan normal form of a matrix is unique up to a permutation of Jordan blocks.
We can calculate the matrix exponential of a matrix using its Jordan normal form.

Theorem 6.5.6. Let A be an n × n matrix and Q be a non-singular matrix such that J =
Q−1AQ is the Jordan normal form of A. Then

exp(At) = Q exp(Jt)Q−1

3For any square matrix, the Jordan normal form exists and is unique up to permutation of Jordan blocks.
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Let’s discuss the case for non-diagonalizable 2× 2 and 3× 3 matrices.

Example 6.5.7. Let A be a non-diagonalizable 2× 2 matrix. Then A has only one eigenvalue
λ1 and the associated eigenspace is of dimension 1. There exists a generalized eigenvector η of
rank 2. Let η1 = (A− λ1I)η and Q = [ η1 η ]. The Jordan normal form of A is

Q−1AQ = J =

(
λ1 1
0 λ1

)
.

The minimal polynomial of A is (x− λ1)2. The matrix exponential is

exp(At) = eλ1tQ

(
1 t
0 1

)
Q−1.

Example 6.5.8. Let A be a non-diagonalizable 3× 3 matrix. There are 3 possible cases.

1. There is one triple eigenvalue λ1 and the associated eigenspace is of dimension 1. Then
there exists a generalized eigenvector η of rank 3. Let η1 = (A− λ1I)η, η2 = (A− λ1I)2η
and Q = [ η2 η1 η ], we have

Q−1AQ = J =

 λ1 1 0
0 λ1 1
0 0 λ1

 .

The minimal polynomial of A is (x− λ1)3. The matrix exponential is

exp(At) = eλ1tQ

 1 t t2

2
0 1 t
0 0 1

Q−1.

2. There is one triple eigenvalue λ1 and the associated eigenspace is of dimension 2. Then
there exists a generalized eigenvector η of rank 2 and an eigenvector ξ such that ξ, η and
η1 = (A− λ1I)η are linearly independent. Let Q = [ ξ η1 η ], we have

Q−1AQ = J =

 λ1 0 0
0 λ1 1
0 0 λ1

 .

The minimal polynomial of A is (x− λ1)2. The matrix exponential is

exp(At) = eλ1tQ

 1 0 0
0 1 t
0 0 1

Q−1.

3. There is one simple eigenvalue λ1 and one double eigenvalue λ2 and both of the associated
eigenspaces are of dimension 2. Then there exists an eigenvector ξ associated with λ1 and
a generalized eigenvector η of rank 2 associated with λ2. Let η1 = (A − λ2I)η (note that
ξ, η, η1 must be linearly independent) and Q = [ ξ η1 η ], we have

Q−1AQ = J =

 λ1 0 0
0 λ2 1
0 0 λ2

 .

The minimal polynomial of A is (x− λ1)(x− λ2)2. The matrix exponential is

exp(At) = Q

 eλ1t 0 0
0 eλ2t teλ2t

0 0 eλ2t

Q−1.
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Example 6.5.9. Find exp(At) where

A =

(
5 −1
1 3

)
.

Solution: Solving the characteristic equation∣∣∣∣ λ− 5 1
−1 λ− 3

∣∣∣∣ = 0

(λ− 5)(λ− 3) + 1 = 0

λ2 − 8λ+ 16 = 0

(λ− 4)2 = 0

λ = 4, 4

we see that A has only one eigenvalue λ = 4. Consider

det(A− 4I)ξ = 0(
1 −1
1 −1

)
ξ = 0

we can find only one linearly independent eigenvector ξ = (1, 1)T . Thus A is not diagonalizable.
To find exp(At), we need to find a generalized eigenvector of rank 2. Now we take

η =

(
1
0

)
and let 

η1 = (A− 4I)η =

(
1 −1

1 −1

)(
1

0

)
=

(
1

1

)

η2 = (A− 4I)η1 =

(
1 −1

1 −1

)(
1

1

)
= 0

We see that η is a generalized eigenvector of rank 2 associated with eigenvalue λ = 4. We may
let

Q = [η1 η] =

(
1 1
1 0

)
Then

J = Q−1AQ

=

(
−1 1
−1 0

)−1(
5 −1
1 3

)(
−1 1
−1 0

)
=

(
0 −1
−1 1

)(
5 −1
1 3

)(
−1 1
−1 0

)
=

(
4 1
0 4

)
is the Jordan normal form of A. Therefore

exp(At) = Q exp(Jt)Q−1

=

(
1 1
1 0

)(
e4t
(

1 t
0 1

))(
0 1
1 −1

)
= e4t

(
1 + t −t
t 1− t

)
�



Systems of first order linear equations 138

Example 6.5.10. Find exp(At) where

A =

 3 1 0
−1 1 0
3 2 2

 .

Solution: Solving the characteristic equation∣∣∣∣∣∣
λ− 3 −1 0

1 λ− 1 0
−3 −2 λ− 2

∣∣∣∣∣∣ = 0

(λ− 2)((λ− 3)(λ− 1) + 1) = 0

(λ− 2)(λ2 − 4λ+ 4) = 0

(λ− 2)3 = 0

λ = 2, 2, 2

we see that A has only one eigenvalue λ = 2. Consider

det(A− 2I)ξ = 0 1 1 0
−1 −1 0
3 2 0

 ξ = 0

we can find only one linearly independent eigenvector ξ = (0, 0, 1)T . Thus A is not diagonaliz-
able. To find exp(At), we need to find a generalized eigenvector of rank 3. Now we take

η =

 1
0
0


and let 

η1 = (A− 2I)η =

 1 1 0

−1 −1 0

3 2 0


 1

0

0

 =

 1

−1

3


η2 = (A− 2I)η1 =

 1 1 0

−1 −1 0

3 2 0


 1

−1

3

 =

 0

0

1


η3 = (A− 2I)η2 =

 1 1 0

−1 −1 0

3 2 0


 0

0

1

 = 0

We see that η is a generalized eigenvector of rank 3 associated with eigenvalue λ = 2. We may
let

Q = [η2 η1 η] =

 0 1 1
0 −1 0
1 3 0





Systems of first order linear equations 139

Then

J = Q−1AQ

=

 0 1 1
0 −1 0
1 3 0

−1 3 1 0
−1 1 0
3 2 2

 0 1 1
0 −1 0
1 3 0


=

 0 3 1
0 −1 0
1 1 0

 3 1 0
−1 1 0
3 2 2

 0 1 1
0 −1 0
1 3 0


=

 2 1 0
0 2 1
0 0 2


is the Jordan normal form of A. Therefore

exp(At) = Q exp(Jt)Q−1

=

 0 1 1
0 −1 0
1 3 0

e2t
 1 t t2

2
0 1 t
0 0 1

 0 3 1
0 −1 0
1 1 0


= e2t

 1 + t t 0
−t 1− t 0

3t+ t2

2 2t+ t2

2 1


�

Exercise 6.5

1. For the given matrix A, find the Jordan normal form of A and the matrix exponential
exp(At).

(a)

(
4 −1
1 2

)

(b)

(
1 −4
4 −7

)

(c)

 5 −1 1
1 3 0
−3 2 1



(d)

 −2 −9 0
1 4 0
1 3 1



(e)

 −1 1 1
1 2 7
−1 −3 −7


(f)

 2 0 −1
0 4 4
0 −1 0


(g)

 −1 3 −9
0 2 0
1 −1 5


(h)

 10 15 22
−4 −4 −8
−1 −3 −3


6.6 Fundamental matrices

Let x(1),x(2), · · · ,x(n) be n linearly independent solutions to the system x′ = Ax. We can put
the solutions together and form a matrix Ψ(t) = [x(1),x(2), · · · ,x(n)]. This matrix is called a
fundamental matrix for the system.
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Definition 6.6.1 (Fundamental matrix). A matrix function Ψ(t) is called a fundamental
matrix for the system x′ = Ax if the column vectors of Ψ(t) form a fundamental set of solutions
for the system.

We may consider fundamental matrices as solutions to the matrix differential equation X′(t) =
AX(t) where X(t) is an n× n matrix function of t.

Theorem 6.6.2. A matrix function Ψ(t) is a fundamental matrix for the system x′ = Ax if
and only if Ψ(t) satisfies the matrix differential equation dΨ

dt = AΨ and Ψ(t0) is non-singular
for some t0.

Proof. For any vector valued functions x(1)(t),x(2)(t), · · · ,x(n)(t), consider the matrix

Ψ(t) =
[

x(1) x(2) · · · x(n)
]
.

We have
dΨ

dt
=

[
dx(1)

dt

dx(2)

dt
· · · dx(n)

dt

]
and

AΨ =
[

Ax(1) Ax(2) · · · Ax(n)
]
.

Thus Ψ satisfies the equation
dΨ

dt
= AΨ

if and only if x(i) is a solution to the system x′ = Ax for any i = 1, 2, · · · , n. Now the solutions
x(1)(t),x(2)(t), · · · ,x(n)(t) form a fundamental set of solutions if and only if they are linearly
independent at some t0 if and only if Ψ(t0) is non-singular for some t0.

Theorem 6.6.3. The matrix exponential exp(At) is a fundamental matrix for the system x′ =
Ax.

Proof. The matrix exponential exp(At) satisfies d
dt exp(At) = A exp(At) and when t = 0, the

value of exp(At) is I which is non-singular. Thus exp(At) is a fundamental matrix for the
system x′ = Ax by Theorem 6.6.2.

If Ψ is a fundamental matrix, we can multiply any non-singular matrix from the right to obtain
another fundamental matrix.

Theorem 6.6.4. Let Ψ be a fundamental matrix for the system x′ = Ax and P be a non-
singular constant matrix. Then Ψ(t)P is also a fundamental matrix for the system.

Proof. Observe that
d

dt
(Ψ(t)P) = Ψ′(t)P = AΨ(t)P

and Ψ(t)P is non-singular for any t. Thus Ψ(t)P is a fundamental matrix for the system
x′ = Ax.

Caution: In general PΨ(t) is not a fundamental matrix.

The theorem below is useful in finding a fundamental matrix for a system.

Theorem 6.6.5. Let A be an n× n matrix.
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1. Suppose P is a non-singular matrix such that P−1AP = D is a diagonal matrix. Then

Ψ(t) = P exp(Dt)

is a fundamental matrix for the system x′ = Ax.

2. Suppose Q is a non-singular matrix such that P−1AP = J is a Jordan matrix. Then

Ψ(t) = Q exp(Jt)

is a fundamental matrix for the system x′ = Ax.

Proof. For the first statement, since exp(At) = P exp(Dt)P−1 is a fundamental matrix (Theo-
rem 6.6.3) for the system x′ = Ax, we have Ψ(t) = P exp(Dt) = exp(At)P is also a fundamental
matrix by Theorem 6.6.4. The proof of the second statement is similar.

Example 6.6.6. Find a fundamental matrix for the system

x′ =

(
2 2
3 1

)
x.

Solution: Solving the characteristic equation∣∣∣∣ λ− 2 −2
−3 λ− 1

∣∣∣∣ = 0

λ2 − 3λ− 4 = 0

λ = 4,−1.

For λ1 = 4, an associated eigenvector is

ξ1 =

(
1
1

)
.

For λ2 = −1, an associated eigenvector is

ξ2 =

(
2
−3

)
.

Hence the matrix

P = [ξ1 ξ2] =

(
1 2
1 −3

)
diagonalizes A and we have

P−1AP = D =

(
4 0
0 −1

)
.

Therefore a fundamental matrix for the system is

Ψ(t) = P exp(Dt)

=

(
1 2
1 −3

)(
e4t 0
0 e−t

)
=

(
e4t 2e−t

e4t −3e−t

)
�
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Example 6.6.7. Find a fundamental matrix for the system x′ = Ax where

A =

(
1 −3
3 7

)
.

Solution: By solving the characteristic equation, we see that A has only one eigenvalue λ = 4.
Taking η = (1, 0)T , we have

η1 = (A− 4I)η =

(
−3 −3

3 3

)(
1

0

)
=

(
−3

3

)

η2 = (A− 4I)η1 =

(
−3 −3

3 3

)(
−3

3

)
= 0

(In fact η2 = 0 is automatic by Cayley-Hamilton theorem since A has only one eigenvalue
λ = 4.) Thus η is a generalized eigenvector of rank 2 associated with λ = 4. Now we take

Q = [η1 η] =

(
−3 1
3 0

)
Then

Q−1AQ =

(
4 1
0 4

)
= J

is the Jordan normal form of A. Therefore a fundamental matrix for the system is

Ψ(t) = Q exp(Jt)

=

(
−3 1
3 0

)(
e4t
(

1 t
0 1

))
= e4t

(
−3 1− 3t
3 3t

)
�

Example 6.6.8. Find a fundamental matrix for the system x′ = Ax where

A =

 0 1 2
−5 −3 −7
1 0 0

 .

Solution: By solving the characteristic equation, we see that A has only one eigenvalue λ = −1.
Taking η = (1, 0, 0)T , we have

η1 = (A + I)η =

 1 1 2

−5 −2 −7

1 0 1


 1

0

0

 =

 1

−5

1


η2 = (A + I)η1 =

 1 1 2

−5 −2 −7

1 0 1


 1

−5

1

 =

 −2

−2

2


η3 = (A + I)η2 =

 1 1 2

−5 −2 −7

1 0 1


 −2

−2

2

 = 0
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(In fact η3 = 0 is automatic by Cayley-Hamilton theorem since A has only one eigenvalue
λ = −1.) Thus η is a generalized eigenvector of rank 3 associated with λ = −1. Now we take

Q = [ η2 η1 η ] =

 −2 1 1
−2 −5 0
2 1 0


Then

Q−1AQ =

 −1 1 0
0 −1 1
0 0 −1

 = J

is the Jordan form of A. Therefore a fundamental matrix for the system is

Ψ = Q exp(Jt)

=

 −2 1 1
−2 −5 0
2 1 0

e−t
 1 t t2

2
0 1 t
0 0 1


= e−t

 −2 1− 2t 1 + t− t2
−2 −5− t −5t− t2
2 1− 2t t+ t2


�

We have seen how exp(At) can be used to write down the solution of an initial value problem
(Theorem 6.4.9). We can also use it to find fundamental matrix with initial condition.

Theorem 6.6.9. Let A be an n×n matrix. For any n×n non-singular matrix Ψ0, the unique
fundamental matrix Ψ(t) for the system x′ = Ax which satisfies the initial condition Ψ(t) = Ψ0

is Ψ(t) = exp(At)Ψ0.

Proof. For Ψ(t) = exp(At)Ψ0, we have

Ψ′(t) =
d

dt
(exp(At)Ψ0) = A exp(At)Ψ0 = AΨ(t)

Moreover Ψ(0) = exp(0)Ψ0 = IΨ0 = Ψ0 and is non-singular. Therefore Ψ(t) is a fundamental
matrix with Ψ(0) = Ψ0. Such fundamental matrix is unique by the uniqueness of solution to
initial value problem (Theorem 6.1.2).

Example 6.6.10. Find a fundamental matrix Ψ(t) for the system x′ = Ax with Ψ(0) = Ψ0

where

A =

(
1 9
−1 −5

)
and Ψ0 =

(
1 0
−1 2

)
Solution: By solving the characteristic equation, A has only one eigenvalue λ = −2. Taking
η = (1, 0)T , we have

η1 = (A + 2I)η =

(
3 9
−1 −3

)(
1
0

)
=

(
3
−1

)
and η2 = (A + 2I)2η = 0 by Cayley-Hamilton theorem. Thus η is a generalized eigenvector
associated with λ = −2. Now taking

Q = [η1 η] =

(
3 1
−1 0

)
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we have

Q−1AQ =

(
−2 1
0 −2

)
= J

is the Jordan normal form of A. Thus

exp(At) = Q exp(Jt)Q−1

=

(
3 1
−1 0

)(
e−2t

(
1 t
0 1

))(
0 −1
1 3

)
= e−2t

(
1 + 3t 9t
−t 1− 3t

)
Therefore the required fundamental matrix with initial condition is

Ψ(t) = exp(At)Ψ0

= e−2t
(

1 + 3t 9t
−t 1− 3t

)(
1 0
−1 2

)
= e−2t

(
1− 6t 18t
−1 + 2t 2− 6t

)
Exercise 6.6

1. Find a fundamental matrix for the system x′ = Ax where A is the following matrix.

(a)

(
3 −2
2 −2

)
(b)

(
1 1
4 −2

)
(c)

(
2 −5
1 −2

)
(d)

(
3 4
−1 −2

)
(e)

(
−1 −4
1 −1

)
(f)

(
1 −3
3 −5

)

(g)

 1 1 1
2 1 −1
−8 −5 −3



(h)

 1 −1 4
3 2 −1
2 1 −1


(i)

 3 0 0
−4 7 −4
−2 2 1


(j)

 3 1 3
2 2 2
−1 0 1


(k)

 3 −1 1
2 0 1
1 −1 2


(l)

 −2 −2 3
0 −1 −1
0 1 −3


2. Find the fundamental matrix Φ which satisfies Φ(0) = Φ0 for the system x′ = Ax for the

given matrices A and Φ0.

(a) A =

(
3 4
−1 −2

)
; Φ0 =

(
2 0
1 −1

)
(b) A =

(
7 1
−4 3

)
; Φ0 =

(
0 1
−1 3

)

(c) A =

 3 0 0
−4 7 −4
−2 2 1

; Φ0 =

 2 0 −1
0 −3 1
−1 1 0
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(d) A =

 1 1 1
2 1 −1
−3 2 4

; Φ0 =

 1 1 0
−1 −2 0
0 1 2


3. Let A be a square matrix and Ψ be a fundamental matrix for the system x′ = Ax.

(a) Prove that for any non-singular constant matrix Q, we have QΨ is a fundamental
matrix for the system if and only if QA = AQ.

(b) Prove that (ΨT )−1 is a fundamental matrix for the system x′ = −ATx.

4. Prove that if Ψ1(t) and Ψ2(t) are two fundamental matrices for a system, then Ψ2 = Ψ1P
for some non-singular matrix P.

6.7 Nonhomogeneous linear systems

We now turn to nonhomogeneous system

x′ = Ax + g(t)

where g(t) is a continuous vector valued function. The general solution of the system can be
expressed as

x = c1x
(1) + · · ·+ cnx

(n) + xp(t),

where x(1), · · · ,x(n) is a fundamental set of solutions to the associated homogeneous system
x′ = Ax and xp is a particular solution to the nonhomogeneous system. So to solve the
nonhomogeneous system, it suffices to find a particular solution. We will briefly describe two
methods for finding a particular solution.

Variation of parameters
The first method we introduce is variation of parameters.

Theorem 6.7.1. Let Ψ(t) be a fundamental matrix for the system x′(t) = Ax(t) and g(t) be a
continuous vector valued function. Then a particular solution to the nonhomogeneous system

x′(t) = Ax(t) + g(t)

is given by

xp = Ψ(t)

∫
Ψ−1(t)g(t)dt

Moreover the solution to the initial value problem{
x′(t) = A(t)x(t) + g(t)
x(t0) = x0

is given by

x(t) = Ψ(t)

(
Ψ−1(t0)x0 +

∫ t

t0

Ψ−1(s)g(s)ds

)
In particular the solution to the nonhomogeneous system with initial condition x(0) = x0 is

x(t) = exp(At)

(
x0 +

∫ t

0
exp(−As)g(s)ds

)
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Proof. We check that xp = Ψ(t)
∫

Ψ−1(t)g(t)dt satisfies the nonhomogeneous system.

x′p =
d

dx

(
Ψ(t)

∫
Ψ−1(t)g(t)dt

)
= Ψ′

∫
Ψ−1gdt+ Ψ

d

dt

(∫
Ψ−1gdt

)
= AΨ

∫
Ψ−1gdt+ ΨΨ−1g

= Axp + g

Now

x(t) = Ψ(t)

(
Ψ−1(t0)x0 +

∫ t

t0

Ψ−1(s)g(s)ds

)
satisfies the nonhomogeneous system. Since x satisfies the initial condition

x(t0) = Ψ(t0)

(
Ψ−1(t0)x0 +

∫ t0

t0

Ψ−1(s)g(s)ds

)
= Ψ(t0)Ψ

−1(t0)x0

= x0

it is the unique solution to the initial value problem. In particular, exp(At) is a fundamental
matrix which is equal to the identity matrix I when t = 0. Therefore the solution to the
nonhomogeneous system with initial condition x(0) = x0 is

x = exp(At)

(
(exp(0))−1x0 +

∫ t

0
(exp(As))−1g(s)ds

)
= exp(At)

(
x0 +

∫ t

0
exp(−As)g(s)ds

)
Here we used the fact that the inverse of exp(As) is exp(−As).

The above theorem works even when the coefficient matrix of the system is not constant. Suppose
Ψ(t) is a fundamental matrix for the homogeneous system x′(t) = P(t)x(t) where P(t) is a
continuous matrix valued function. That means Ψ′(t) = P(t)Ψ(t) and Ψ(t0) is non-singular for
some t0. Then a particular solution to the nonhomogeneous system x′(t) = P(t)x(t) + g(t) is

xp(t) = Ψ(t)

∫
Ψ−1(t)g(t)dt

and the solution to the system with initial condition x(t0) = x0 is

x(t) = Ψ(t)

(
Ψ−1(t0)x0 +

∫ t

t0

Ψ−1(s)g(s)ds

)
Example 6.7.2. Use method of variation of parameters to find a particular solution for the
system x′ = Ax + g(t) where

A =

(
−2 1
1 −2

)
and g(t) =

(
4e−t

18t

)
.
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Solution: The eigenvalues of A are λ1 = −3 and λ2 = −1 with eigenvectors (1,−1)T and (1, 1)T

respectively. Thus a fundamental matrix of the system is

Ψ = P exp(Dt) =

(
1 1
−1 1

)(
e−3t 0

0 e−t

)
=

(
e−3t e−t

−e−3t e−t

)
.

Now

Ψ−1g =

(
e−3t e−t

−e−3t e−t

)−1(
4e−t

18t

)
=

1

2

(
e3t −e3t
et et

)(
4e−t

18t

)
=

(
2e2t − 9te3t

2 + 9tet

)
.

Thus ∫
Ψ−1gdt =

∫ (
2e2t − 9te3t

2 + 9tet

)
dt

=

(
e2t − 3te3t + e3t + c1
2t+ 9tet − 9et + c2

)
.

Therefore a particular solution is

xp =

(
e−3t e−t

−e−3t e−t

)(
e2t − 3te3t + e3t

2t+ 9tet − 9et

)
=

(
e−3t(e2t − 3te3t + e3t) + e−t(2t+ 9tet − 9et)
−e−3t(e2t − 3te3t + e3t) + e−t(2t+ 9tet − 9et)

)
=

(
2te−t + e−t + 6t− 8

2te−t − e−t + 12t− 10

)
�

Example 6.7.3. Solve the initial value problem x′ = Ax + g(t) with x(0) = (−1, 1)T , where

A =

(
1 1
0 1

)
and g(t) =

(
2e−t

0

)
.

Solution: Observe that A is a Jordan matrix. We have

exp(At) = et
(

1 t
0 1

)
Then we calculate

exp(−As) = e−s
(

1 s
0 1

)−1
=

(
e−s −se−s
0 e−s

)
∫ t

0
exp(−As)g(s)ds =

∫ t

0

(
e−s −se−s
0 e−s

)(
2e−s

0

)
ds

=

∫ t

0

(
2e−2s

0

)
ds

=

(
1− e−2t

0

)
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Therefore the solution to the initial value problem is

xp = exp(At)

(
x0 +

∫ t

0
exp(−As)g(s)ds

)
= et

(
1 t
0 1

)((
−1
1

)
+

(
1− e−2t

0

))
= et

(
1 t
0 1

)(
−e−2t

1

)
=

(
tet − e−t

et

)
Undetermined coefficients We are not going to discuss the general case of the method of
undetermined coefficients. We only study the nonhomogeneous system

x′(t) = Ax(t) + tkeαtg

where g is a constant vector. Then there is a particular solution of the form

xp = eαt(tm+kam+k + tm+k−1am+k−1 + · · ·+ ta1 + a0)

where m is the smallest non-negative integer such that the general solution of the associated
homogeneous system does not contain any term of the form tmeαta and am+k,am+k−1, · · · ,a1,a0

are constant vectors which can be determined by substituting xp to the system. Note that a
particular solution may contain a term of the form tieαtai even if it appears in the general
solution of the associated homogeneous system.

Example 6.7.4. Use method of undetermined coefficients to find a particular solution for the
system x′ = Ax + g(t) where

A =

(
−2 1
1 −2

)
and g(t) =

(
4e−t

18t

)
.

Solution: Let
xp(t) = te−ta + e−tb + tc + d

be a particular solution. (Remark: It is not surprising that the term te−ta appears since λ = −1
is an eigenvalue of A. But one should note that we also need the term e−tb. It is because b may
not be an eigenvector. Thus e−tb may not be a solution to the associated homogeneous system
and may appear in the particular solution.) Substituting xp to the nonhomogeneous system, we
have

x′p = Axp + g(t)

−te−ta + e−t(a− b) + c = te−tAa + e−tAb + tAc + Ad +

(
4e−t

18t

)
Comparing the coefficients of te−t, e−t, t, 1, we have

(A + I)a = 0

(A + I)b = a−
(

4
0

)
Ac = −

(
0
18

)
Ad = c
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The solution for a,b, c,d of the above equations is not unique and we may take any solution,
say

a =

(
2
2

)
, b =

(
0
−2

)
, c =

(
6
12

)
, d = −

(
8
10

)
.

to obtain a particular solution

xp = te−t
(

2
2

)
− e−t

(
0
2

)
+ t

(
6
12

)
−
(

8
10

)
=

(
2te−t + 6t− 8

2te−t − 2e−t + 12t− 10

)
(Note: This particular solution is not the same as the one given in Example 6.7.2. They are
different by (e−t, e−t)T which is a solution to the associated homogeneous system.) �

Exercise 6.7

1. Use the method of variation of parameters to find a particular solution for each of the
following non-homogeneous equations.

(a) x′ =

(
1 2
4 3

)
x +

(
−6e5t

6e5t

)
(b) x′ =

(
1 1
4 −2

)
x +

(
e−2t

−2et

)
(c) x′ =

(
2 −1
4 −3

)
x +

(
0

9et

)
(d) x′ =

(
0 1
−2 3

)
x +

(
et

0

)
(e) x′ =

(
2 −1
3 −2

)
x +

(
et

t

)
(f) x′ =

(
2 −5
1 −2

)
x +

(
0

cos t

)
2. For each of the nonhomogeneous linear systems in Question 1, write down a suitable form

xp(t) of a particular solution.



7 Answers to exercises

Exercise 1.1

1. (a) y = e3x + Ce−x

(b) y = 3x+ Cx−
1
3

(c) y = 1
3 + Ce−x

3

(d) y = C+ln |x|
x

(e) y = 2
3

√
x+ C

x

(f) y = Cx− x cosx

(g) y = 2
3(x+ 1)

7
2 + C(x+ 1)2

(h) y = sinx+ C cosx

(i) y = (1 + C
x )e−3x

2. (a) y = e2x

(b) y = 1 + e− sinx

(c) y = 1 + 16(x2 + 4)−
3
2

(d) y = x lnx−x+21
x+1

(e) y = lnx
x −

1
x + 3

x2

(f) y = π−1−cosx
x

Exercise 1.2

1. (a) y = 1
x2+C

(b) y = (x
3
2 + C)2

(c) y = 1 + (x2 + C)3

(d) y = Ce− cosx

(e) y2 + 1 = Cex
2

(f) ln |1 + y| = x+ 1
2x

2 + C

2. (a) y = xex
2−1

(b) y = 2ee
x

(c) y2 = 1 +
√
x2 − 16

(d) y = −3ex
4−x

(e) y = π
2 sinx

(f) y = tan
(
x3 + π

4

)
3. y = 1000

1+9e−0.08x

Exercise 1.3

1. (a) 5
2x

2 + 4xy − 2y4 = C

(b) x3 + 2y2x+ 2y3 = C

(c) 3
2x

2y2 − xy3 = C

(d) x+ exy + y2 = C

(e) 3x4 + 4y3 + 12y lnx = C

(f) sinx+ x ln y + ey = C

2. (a) k = 2; x2y2 − 3x+ 4y = C

(b) k = −3; 3x2y − xy3 + 2y2 = C

(c) k = 2; x3 + x2y2 + y4 = C

(d) k = 4; 5x3y3 + 5xy4 = C

3. (a) x3y + 1
2x

2y2 = C

(b) x
y = C

(c) ln |xy|+ y3

3 = C

(d) ln(x2+y2)
2 + tan−1 yx

Exercise 1.4

1. (a) y2 = x2(ln |x|+ C)

(b) y = x sin(C + ln |x|)

(c) y = x(C + ln |x|)2

(d) ln |xy| = xy−1 + C

(e) y = x
C−ln |x|

(f) y = −x ln(C − ln |x|)

Exercise 1.5

1.
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(a) y = 1
Cx−x2 (b) y3 = 7x

15+Cx7
(c) y = 1

Cx−x2

Exercise 1.6

1. (a) y = ex
2+ C

x2

(b) x = 2(x+ y)
1
2 − 2 ln(1 + (x+ y)

1
2 ) +C

(c) y = tan(x+ C)− x− 3

(d) y = − ln(Cex − 1)

2. (a) y = x+ 2x

Ce
2
x−1

(b) y = 1
x + 3x2

C−x2

Exercise 1.7

1. (a) x = C1y
2 + C2

(b) y = C1 cos 2x+ C2 sin 2x

(c) y = x2 + C1 lnx+ C2

(d) y = lnx+ C1x
−2 + C2

(e) y = ±(C1 + C2e
x)

1
2

(f) y3 + C1y + 3x+ C2 = 0

2. (a) y = 1√
C−x2 (Separable)

(b) y = x2 ln |x|+ Cx2 (Linear)

(c) 3x3 + xy − x− 2y2 = C (Exact)

(d) y = (x2 + C
x )2 (Bernoulli)

(e) y = x
C−lnx (Homogeneous)

(f) y = x
1+2x lnx+Cx (Separable)

(g) y = tan
(
x3

3 + x+ C
)

(Separable)

(h) y = 1
2 −

1
x + C

x2
(Linear)

(i) y = 1 + (1− x) ln |1− x|+ C(1− x) (Linear)

(j) 3x2y3 + 2xy4 = C (Exact, homogeneous)

(k) y2 = x2

2 ln |x|+C (Homogeneous, Bernoulli)

(l) y = x−1(ln |x|+ C)−
1
3 (Bernoulli)

Exercise 2.1

1. (a)

(
1 0 −2
0 1 3

)

(b)

 1 0 5
0 1 −1
0 0 0


(c)

 1 0 −3
0 1 5
0 0 0


(d)

 1 −4 0
0 0 1
0 0 0


(e)

 1 0 −1 2
0 1 3 −1
0 0 0 0



(f)

 1 −2 0 1
0 0 1 −1
0 0 0 0



(g)

 1 2 0 1 2
0 0 1 1 1
0 0 0 0 0



(h)

 1 2 0 2 3
0 0 1 1 4
0 0 0 0 0



(i)

 1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2
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2. (a) (x1, x2, x3) = (13 + 11α, 2 + 5α, α)

(b) Inconsistent

(c) (x1, x2, x3) = (7− 2α, α− 1, α)

(d) (x1, x2, x3, x4) = (13 + 4α, 6 + α, 5 + 3α, α)

(e) (x1, x2, x3, x4) = (2α− β, α, β, 1)

(f) (x1, x2, x3, x4) = (4 + 2α− 3β, α, 3− 4β, β)

Exercise 2.2

1. There are many possible answers. For example, A =

(
0 1
0 0

)
or

(
0 0
1 0

)

2. There are many possible answers. For example, A =

(
1 0
0 −1

)
or

(
0 1
1 0

)
3. Let S = A+AT

2 and K = A−AT

2 . Then ST = AT+(AT )T

2 = AT+A
2 = S and KT =

AT−(AT )T

2 = AT−A
2 = −K. Now we have A = S + K where S is symmetric and K is

skew-symmetric.

4. Let S = A − B = D − C. Observe that S is both symmetric and skew-symmetric. We
must have S = 0. Therefore A = B and C = D.

5.

A2 − (a+ d)A + (ad− bc)I

=

(
a b
c d

)2

− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
−
(
a2 + ad ab+ bd
ac+ cd ad+ d2

)
+

(
ad− bc 0

0 ad− bc

)
= 0

6.

(A + B)2 = A2 + 2AB + B2

⇔ A2 + AB + BA + B2 = A2 + 2AB + B2

⇔ BA = AB

Exercise 2.3

1. (a)

(
5 −6
−4 5

)
(b) 1

2

(
6 −7
−4 5

)

(c)

 −5 −2 5
2 1 −2
−4 −3 5


(d)

 18 2 −7
−3 0 1
−4 −1 2



(e) 1
3

 −3 0 3
−1 −3 −1
−1 3 2


(f) 1

5

 1 2 −2
−5 0 5
−3 −1 6



(g) 1
5


1 −1 1 0
0 −2 −1 2
0 1 1 −1
−3 3 −5 1
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2. (a) x1 = 3, x2 = −1 (b) x1 = 1, x2 = −11, x3 = 16

3. (a)

 3 0
7 −1
1 1

 (b)

 12 −3
−8 1
−21 9


4. We have

(I + BA−1)A(A + B)−1 = (A + B)(A + B)−1 = I

and
A(A + B)−1(I + BA−1) = A(A + B)−1(A + B)A−1 = AIA−1 = I.

Therefore (I + BA−1)−1 = A(A + B)−1.

5. We prove the statement by finding an inverse for I−A. Now

(I−A)(I + A + A2 + · · ·+ Ak−1)

= (I + A + A2 + · · ·+ Ak−1)− (A + A2 + A3 + · · ·+ Ak)

= I−Ak

= I

Similarly (I+A+A2+· · ·+Ak−1)(I−A) = I. Therefore (I−A)−1 = I+A+A2+· · ·+Ak−1.

6. We prove the statement by finding the inverse of A−1 + B−1. Since

(A−1 + B−1)A(A + B)−1B = (I + B−1A)(A + B)−1B

= B−1(B + A)(A + B)−1B

= B−1IB

= I

and

A(A + B)−1B(A−1 + B−1) = A(A + B)−1(BA−1 + I)

= A(A + B)−1(B + A)A−1

= AIA−1

= I

we have (A−1 + B−1)−1 = A(A + B)−1B.

7. First we have A−1A = I. Differentiating both sides with respect to t, we have

d

dt

(
A−1A

)
= 0(

d

dt
A−1

)
A + A−1

d

dt
A = 0(

d

dt
A−1

)
A = −A−1

d

dt
A

d

dt
A−1 = −A−1

(
d

dt
A

)
A−1
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8. Suppose x is a vector such that Ax = 0, then xTAx = 0 and xTATx = (Ax)Tx = 0.
Now we have

(Sx)T (Sx) = xTSTSx

= xTS2x

= xT (A + AT )x

= xTAx + xTATx

= xT0 + (Ax)Tx

= 0.

Thus Sx = 0. Since S is non-singular, we have x = 0. Therefore A is non-singular.

Exercise 2.4

1. (a) −1 (b) −58 (c) 0 (d) 10

2. (a) a

(b) a2
(c) (−1)na

(d) 3na

(e) 1
a

(f) an−1

3. (a)

 3 −5 −5
−3 4 5
2 −2 −3

 (b)
1

2

 1 3 2
0 2 3
0 0 1

 (c)
1

8

 2 −3 3
2 1 −1
−2 −1 9


4. (a) x1 = 1, x2 = 1, x3 = 2

(b) x1 = 4
5 , x2 = −3

2 , x3 = −8
5

(c) x1 = −10
11 , x2 = 18

11 , x3 = 38
11

(d) x1 = −144
55 , x2 = −61

55 , x3 = 46
11

5. Let p(a, b, c) be the given determinant. First note p(a, b, c) is a polynomial of degree 3.
Secondly, if a = b, then the p(a, b, c) = 0. It follows that p(a, b, c) has a factor b − a.
Similarly p(a, b, c) has factors c − b and c − a. Thus p(a, b, c) = k(b − a)(c − b)(c − a)
where k is a constant. Observe that the coefficient of bc2 is 1. Therefore k = 1 and
p(a, b, c) = (b− a)(c− b)(c− a).

6.

d

dt

∣∣∣∣ a(t) b(t)
c(t) d(t)

∣∣∣∣ =
d

dt
(a(t)d(t)− b(t)c(t))

= a′(t)d(t) + a(t)d′(t)− b′(t)c(t)− b(t)c′(t)
= a′(t)d(t)− b′(t)c(t) + a(t)d′(t)− b(t)c′(t)

=

∣∣∣∣ a′(t) b′(t)
c(t) d(t)

∣∣∣∣+

∣∣∣∣ a(t) b(t)
c′(t) d′(t)

∣∣∣∣
Exercise 2.5

1. (a) y = x2 − 5 (b) y = x2 − x+ 3 (c) y = 1
2x

2 − 3
2x

2. (a) x2+y2−6x−4y−12 = 0 (b) x2+y2−6x−8y−75 = 0 (c) x2+y2+4x+4y−5 = 0

3. y = −x3 + 3x+ 5

4.
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(a) y = 3 + 2
x

(b) y = 10x+ 8
x −

16
x2

(c) y = 6
x+2

(d) y = 3x−4
x−2

Exercise 3.2

1. (a) Yes

(b) No

(c) No

(d) Yes

(e) Yes

(f) No

2. (a) Yes

(b) Yes

(c) No

(d) Yes

(e) Yes

(f) Yes

3. (a) Yes (b) No (c) No (d) Yes

Exercise 3.3

1. (a) Yes

(b) No

(c) Yes

(d) No

(e) No

(f) Yes

2. (a) Yes (b) Yes (c) No (d) No

3. Suppose c1(v1 +v2) + c2(v2 +v3) + c3(v1 +v3) = 0. Then (c1 + c3)v1 + (c2 + c1)v2 + (c3 +
c2)v3 = 0. Since v1,v2,v3 are linearly independent, we have c1+c3 = c2+c1 = c3+c2 = 0.
This implies c1 = ((c1 + c2)+(c1 + c3)− (c2 + c3))/2 = 0. Similarly, c2 = c3 = 0. Therefore
v1 + v2,v2 + v3,v1 + v3 are linearly independent.

4. Let v1,v2, · · · ,vk be a set of k vectors. Suppose one of the vectors is zero. Without loss
of generality, we may assume v = 0. Then 1 · v1 + 0 · v2 + · · · + 0 · vk = 0 and not all
of the coefficients of the linear combination are zero. Therefore v1,v2, · · · ,vk are linearly
dependent.

5. Let T = {v1,v2, · · · ,vk} be a set of linearly independent vectors. Let S be a subset of
T . Without loss of generality, we may assume S = {v1,v2, · · · ,vl} for some l ≤ k. To
prove that the set S is linearly independent, suppose c1v1 + c2v2 + · · · + clvl = 0. Then
c1v1 + c2v2 + · · · + clvl + 0 · vl+1 + · · · + 0 · vk = 0. Since T is linearly independent, all
coefficients c1, c2, · · · , cl, 0, · · · , 0 in the linearly combination are zero. Thus c1 = c2 =
· · · = cl = 0. Therefore S is linearly independent.

6. Suppose c1v1 + c2v2 + · · · + ckvk + cv = 0. Then c1v1 + c2v2 + · · · + ckvk = −cv. Now
c1v1 + c2v2 + · · · + ckvk ∈ W which implies −cv ∈ W . However since v 6= W , we must
have c = 0. It follows that c1v1 + c2v2 + · · · + ckvk = 0. Hence c1 = c2 = · · · = ck =
0 since v1,v2, · · · ,vk are linearly independent. Therefore v1,v2, · · · ,vk,v are linearly
independent.

Exercise 3.4

1. The answer is not unique.

(a) {(2,−1, 0), (4, 0, 1)} (b) {(1, 0, 3), (0, 1,−1)} (c) {(1,−3, 0), (0, 0, 1)}

2. The answer is not unique.
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(a) {(11, 7, 1)}
(b) {(11,−5, 1)}
(c) {(−11,−3, 1, 0), (−11,−5, 0, 1)}

(d) {(3,−2, 1, 0), (−4,−3, 0, 1)}
(e) {(2,−3, 1, 0)}
(f) {(1,−3, 1, 0), (−2, 1, 0, 1)}

Exercise 3.5

1. The answer is not unique.

(a) Null space: {(−11, 4, 1)T }; Row space: {(1, 0, 11), (0, 1,−4)};
Column space: {(1, 1, 2)T , (2, 5, 5)T }

(b) Null space: {(2,−3, 1, 0)T }; Row space: {(1, 0,−2, 0), (0, 1, 3, 0), (0, 0, 0, 1)};
Column space: {(1, 3, 2)T , (1, 1, 5)T , (1, 4, 12)T }

(c) Null space: {(2, 1, 0, 0, 0)T , (−1, 0, 2,−1, 1)T };
Row space: {(1,−2, 0, 0, 1), (0, 0, 1, 0,−2), (0, 0, 0, 1, 1)};
Column space: {(3, 1, 1)T , (1, 0, 2)T , (3, 1, 0)T }

(d) Null space: {(3,−2, 1, 0)T , (−4,−3, 0, 1)T }; Row space: {(1, 0,−3, 4), (0, 1, 2, 3)};
Column space: {(1, 1, 1, 2)T , (1, 4, 3, 5)T }

(e) Null space: {(−1,−2, 1, 0)T }; Row space: {(1, 0, 1, 0), (0, 1, 2, 0), (0, 0, 0, 1)};
Column space: {(1, 1, 1, 2)T , (−2, 4, 3, 2)T , (−5, 2, 1,−3)T }

(f) Null space: {(−2,−1, 1, 0, 0)T , (−1,−2, 0, 1, 0)T };
Row space: {(1, 0, 2, 1, 0), (0, 1, 1, 2, 0), (0, 0, 0, 0, 1)};
Column space: {(1, 2, 2, 3)T , (1, 3, 3, 1)T , (1, 2, 3, 4)T }

(g) Null space: {(−2,−1, 1, 0, 0)T , (−1,−2, 0, 0, 1)T };
Row space: {(1, 0, 2, 0, 1), (0, 1, 1, 0, 2), (0, 0, 0, 1, 0)};
column space: {(1,−1, 2,−2)T , (1, 0, 3, 4)T , (0, 1, 1, 7)T }

2. The answer is not unique.

(a) {(1, 0, 1, 1), (0, 1,−1, 1)}
(b) {(1, 0, 2, 2), (0, 1, 0,−1)}
(c) {(1, 0, 2, 0), (0, 1,−2, 0), (0, 0, 0, 1)}
(d) {(1,−2, 1, 1, 2), (0, 1, 1, 3, 0), (0, 0, 0, 0, 1)}
(e) {(1,−3, 4,−2, 5), (0, 0, 1, 3,−2), (0, 0, 0, 0, 1)}

3. Denote by nA, nB and nAB the nullity of A, B and AB respectively. By the rank nullity
theorem, we have rA = n− nA, rB = k− nB and rAB = k− nAB. Now we have (Theorem
3.5.10)

nB ≤ nAB ≤ nA + nB

k − rB ≤ k − rAB ≤ (n− rA) + (k − rB)

rB ≥ rAB ≥ rA + rB − n

Moreover, we have

rAB = rank((AB)T ) = rank(BTAT ) ≤ rank(AT ) = rank(A) = rA

Therefore
rA + rB − n ≤ rAB ≤ min(rA, rB)
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Exercise 3.6

1. The answer is not unique.

(a) {(2, 1, 0), (−3, 0, 1)}
(b) {(2, 1, 0, 0), (3, 0, 1, 0), (−5, 0, 0, 1)}
(c) {(7,−3, 1, 0), (−19, 5, 0, 1)}
(d) {(−12,−3, 1, 0), (16, 7, 0, 1)}
(e) {(−13, 4, 1, 0, 0), (4,−3, 0, 1, 0), (−11, 4, 0, 0, 1)}
(f) {(−5, 1, 1, 0, 0), (−12, 4, 0, 1, 0), (−19, 7, 0, 0, 1)}
(g) {(−1,−1, 1, 0, 0), (0,−1, 0,−1, 1)}
(h) {(−2, 1, 1, 0, 0), (1,−2, 0, 1, 0)}

2. (a)

|u + v|2 + |u− v|2 = 〈u + v,u + v〉+ 〈u− v,u− v〉
= 〈u,u〉+ 2〈u,v〉+ 〈v,v〉+ 〈u,u〉 − 2〈u,v〉+ 〈v,v〉
= 2|u|2 + 2|v|2

(b)

|u + v|2 − |u− v|2 = 〈u + v,u + v〉+ 〈u− v,u− v〉
= (〈u,u〉+ 2〈u,v〉+ 〈v,v〉)− (〈u,u〉 − 2〈u,v〉+ 〈v,v〉)
= 4〈u,v〉

3. Suppose w ∈W ∩W⊥. Consider 〈w,w〉. Note that the first vector is in W and the second
vector is in W⊥. We must have 〈w,w〉 = 0. Therefore w = 0 and W ∩W⊥ = {0}.

4. Suppose w ∈W . For any v ∈W⊥, we have 〈w,v〉 = 0 since w ∈W and v ∈W⊥. Hence
w ∈ (W⊥)⊥. Therefore W ⊂ (W⊥)⊥.

5. Suppose c1v1 + c2v2 + · · · + ckvk = 0. For any i = 1, 2, . . . , k, we have c1〈vi,v1〉 +
c2〈vi,v2〉 + · · · + ck〈vi,vk〉 = 〈vi,0〉 = 0. Since 〈vi,vj〉 = 0 whenever i 6= j, we get
ci〈vi,vi〉 = 0. Since vi is a non-zero vector, we obtain ci = 0 for i = 1, 2, · · · , k. Therefore
v1,v2, · · · ,vk are linearly independent.

Exercise 4.1

1. (a) linearly dependent

(b) linearly independent

(c) linearly independent

(d) linearly dependent

(e) linearly independent

(f) linearly dependent

(g) linearly dependent

(h) linearly dependent

2. (a) −5e−t

(b) 1

(c) e−4t

(d) t2et
(e) −e2t

(f) 0

3. 3
25

4. 3e
2
3
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5.

W [y1, y2](t) =

∣∣∣∣ t3 |t3|
3t2 3t|t|

∣∣∣∣
= 3t4|t| − 3t2|t3|
= 0

Suppose y1 and y2 are solution to a second order linear equation. Then Theorem 4.1.14
asserts that y1 and y2 must be linearly dependent since their Wronskian is zero. This
contradicts that fact that y1 and y2 are linearly independent. Therefore the assumption
that y1 and y2 are solution to a second order linear equation cannot be true.

6.

W [fg, fh](t) =

∣∣∣∣ fg fh
f ′g + fg′ f ′h+ fh′

∣∣∣∣
= fg(f ′h+ fh′)− fh(f ′g + fg′)

= f2gh′ − f2hg′

= f2(gh′ − hg′)

= f2
∣∣∣∣ g h
g′ h′

∣∣∣∣
= f2W [g, h](t)

Exercise 4.2

1. (a) y = c1t
2 + c2t

−1

(b) y = c1t
−1 + c2t

−2

(c) y = c1t+ c2t ln t

(d) y = c1e
t + c2te

t

(e) y = c1 cos(t2) + c2 sin(t2)

(f) y = c1t
−1 + c2t

−1 ln t

(g) y = c1t
2 + c2t

2 ln t

(h) y = c1 cos(ln t) + c2 sin(ln t)

Exercise 4.3

1. (a) y = c1e
−3t + c2e

2t

(b) y = c1 cos 3t+ c2 sin 3t

(c) y = c1e
2t + c2e

t

(d) y = c1te
4t + c2e

4t

(e) y = e−2t(c1 cos 3t+ c2 sin 3t)

(f) y = et(c1 cos 2t+ c2 sin 2t)

2. (a) y = et

(b) y = −1− e−3t
(c) y = 9e−2t − 7e−3t

(d) y = 4e−
t
2 cos t+ 3e−

t
2 sin t

3. (a) y = c1t
−4 + c2t

3 (b) y = c1t
2 + c2t

2 lnx

Exercise 4.4

1. (a) y = c1e
3t + c2e

−t − e2t

(b) y = c1e
−t cos 2t+ c2e

−t sin 2t+ 3
17 cos 2t+ 12

17 sin 2t

(c) y = c1 cos 3t+ c2 sin 3t+ 1
162(9t2 − 6t+ 1)e3t + 2

3

(d) y = c1e
t + c2e

−2t − t− 1
2
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(e) y = c1e
−t + c2te

−t + t2e−t

(f) y = c1e
t + c2te

t + 1
6 t

3et + 4

(g) y = c1 cos 2t+ c2 sin 2t+ 1
4 t

2 − 1
8 + 3

5e
t

(h) y = c1e
−t cos 2t+ c2e

−t sin 2t+ te−t sin 2t

(i) y = c1e
−t + c2e

4t − e2t + 3
17 cos t− 5

17 sin t

(j) y = C1e
−2t + C2te

−2t + 1
2e

2t4t2e−2t

2. (a) yp = t(A4t
4 +A3t

3 +A2t
2 +A1t+A0) + t(B2t

2 +B1t+B0)e
−3t +D cos 3t+E sin 3t

(b) yp = et(A1 cos 2t+A2 sin 2t) + (B1t+B0)e
2t cos t+ (E1t+ E0)e

2t sin t

(c) yp = A1t+A0 + t(B1t+B0) cos t+ t(C1t+ C0) sin t

(d) yp = Ae−t + t(B2t
2 +B1t+B0)e

−t cos t+ t(C2t
2 + C1t+ C0)e

−t sin t

(e) yp = A1t+A0 + t2(B1t+B0) + (C1t+ C0) cos t+ (D1t+D0) sin t

Exercise 4.5

1. (a) y = c1e
2t + c2e

3t + et

(b) y = c1e
−t + c2e

2t − 2
3 te
−t

(c) y = c1e
−t + c2te

−t + 2t2 + e−t

(d) y = c1 cos t+ c2 sin t− cos t ln(sec t+ tan t)

(e) y = c1 cos 3t+ c2 sin 3t+ sin 3t ln(sec 3t+ tan 3t)− 1

(f) y = c1e
t + c2te

t − 1
2e
t ln(1 + t2) + tet tan−1 t

(g) y = c1e
t + c2e

2t − e−t + et ln(1 + e−t) + e2t ln(1 + e−t)

2. (a) y = c1t
−1 + c2t

2 + 1
2 + t2 ln t

(b) y = c1t+ c2te
t − 2t2

(c) y = c1t+ c2e
t − 1

2(2t− 1)e−t

(d) y = c1t
2 + c2t

2 ln t+ 1
6 t

2(ln t)3

Exercise 4.7

1. (a) yp(t) = A1t+A0 + (B1t+B0) cos t+ (C1t+ C0) sin t

(b) yp(t) = t(A1t+A0) + t(B1t+B0)e
t cos t+ t(C1t+ C0)e

t sin t

(c) yp(t) = t2(A1t+A0)e
t

(d) yp(t) = Atet + t(B1t+B0)e
2t

(e) yp(t) = t2(A1t+A0) cos t+ t2(B1t+B0) sin t

(f) yp(t) = t2(A2t
2 +A1t+A0)

(g) yp(t) = Atet + t3(B2t
2 +B1t+B0)

2. (a) −1
2 t

2

(b) y = t2e2t
(c) y = 1

30e
4t

(d) y = ln(sec t)− sin t ln(sec t+ tan t)

Exercise 5.1

1. (a) λ1 = −1, {v1 = (1, 1)T }; λ2 = 2, {v2 = (2, 1)T }
(b) λ1 = 2, {v1 = (1, 1)T }; λ2 = 4, {v2 = (3, 2)T }
(c) λ1 = i, {v1 = (−1, 2 + i)T }; λ2 = −i, {v2 = (−1, 2− i)T }
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(d) λ1 = λ2 = 2, {v1 = (1, 1)T }
(e) λ1 = 0, {v1 = (1, 1, 1)T }; λ2 = 1, {v2 = (3, 2, 1)T }; λ3 = 2, {v3 = (7, 3, 1)T }
(f) λ1 = 2, {v1 = (1, 1, 0)T }; λ2 = λ3 = 1, {v2 = (1, 0, 0)T ,v3 = (0, 1,−1)T }
(g) λ1 = λ2 = λ3 = −1, {v1 = (1, 0, 1)T }
(h) λ1 = 3, {v1 = (1, 0, 0)T }; λ2 = λ3 = 1, {v2 = (1, 0, 1)T ,v3 = (−3, 1, 0)T }
(i) λ1 = 1, {v1 = (1,−1, 8)T }; λ2 = λ3 = 2, {v2 = (0, 0, 1)T }
(j) λ1 = λ2 = λ3 = −1, {v1 = (1, 1, 0)T ,v2 = (−5, 3, 8)T }

2. Suppose λ is an eigenvalue of A. Then there exists ξ 6= 0 such that Aξ = λξ.

A2ξ = Aξ

A(λξ) = λξ

λAξ = λξ

λ2ξ = λξ

(λ2 − λ)ξ = 0

Thus λ2 − λ = 0 since ξ 6= 0. Therefore λ = 0 or 1.

3. (a) Since det(AT − λI) = det(A− λI), the characteristic equation of A and AT are the
same. Therefore AT and A have the same set of eigenvalues.

(b) The matrix A is non-singular if and only if det(A) = 0 if and only if λ = 0 is a root
of the characteristic equation det(A− λI) = 0 if and only if λ = 0 is an eigenvalue of
A.

(c) Suppose λ is an eigenvalue of A. Then there exists ξ 6= 0 such that Aξ = λξ. Now

Akξ = Ak−1Aξ = Ak−1(λξ) = λAk−1ξ = · · · = λkξ.

Therefore λk is an eigenvalue of Ak.

(d) Suppose λ is an eigenvalue of a non-singular matrix A. Then there exists ξ 6= 0 such
that

Aξ = λξ

ξ = A−1(λξ)

ξ = λA−1ξ

λ−1ξ = A−1ξ

Therefore λ−1 is an eigenvalue of ξ.

4. Let

A =


a11 · · · · · · a1n

a22 · · · a2n
. . .

...
0 ann

 ,
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be an upper-triangular matrix. Then λ is an eigenvalue of A if and only if∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 a13 · · · a1n
a22 − λ a23 · · · a2n

. . .
. . .

...
. . . an−1n0 ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(λ− a11)(λ− a22) · · · (λ− ann) = 0

λ = a11, a22, · · · , ann

Exercise 5.2

1. (a) P =

(
3 −1
4 1

)
, D =

(
5 0
0 −2

)
(b) P =

(
1 1

1− i 1 + i

)
, D =

(
1 + 2i 0

0 1− 2i

)
(c) P =

(
1 3
1 2

)
, D =

(
1 0
0 3

)

(d) P =

 1 1 1
−1 −2 −3
1 4 9

, D =

 1 0 0
0 2 0
0 0 3


(e) P =

 0 1 −1
0 1 0
1 0 2

, D =

 1 0 0
0 1 0
0 0 3


(f) P =

 1 1 1
1 −1 0
1 0 −1

, D =

 5 0 0
0 −1 0
0 0 −1


(g) P =

 1 −1 1
1 0 1
0 2 1

, D =

 −1 0 0
0 1 0
0 0 2


2. (a) The characteristic equation of the matrix is (λ−2)2 = 0. There is only one eigenvalue

λ = 2. For eigenvalue λ = 2, the eigenspace is span((1, 1)T ) which is of dimension 1.
Therefore the matrix is not diagonalizable.

(b) The characteristic equation of the matrix is (λ − 2)(λ − 1)2 = 0. The algebraic
multiplicity of eigenvalue λ = 1 is 2 but the associated eigenspace is spanned by one
vector (1, 2,−1)T . Therefore the matrix is not diagonalizable.

(c) The characteristic equation of the matrix is (λ − 2)2(λ − 1) = 0. The algebraic
multiplicity of eigenvalue λ = 2 is 2 but the associated eigenspace is spanned by one
vector (1, 1,−1)T . Therefore the matrix is not diagonalizable.

3. Suppose A is similar to A. Then there exists non-singular matrix P such that B =
P−1AP. Then B−1 = (P−1AP)−1 = P−1A−1P. Therefore A−1 is similar to B−1.

4. The answer is negative. Consider A = B = C =

(
2 0
0 1

)
and D =

(
1 0
0 2

)
. Then

A,B,C,D are all similar. But AC =

(
4 0
0 1

)
is not similar to BD =

(
2 0
0 2

)
.
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5. If A is similar to B, then A− λI is similar to B− λI for any λ. Thus A and B have the
same characteristic equation. Therefore A and B have the same set of eigenvalues.

6. Let A = [aij ] and B = [bij ]

tr(AB) =
n∑
k=0

[AB]kk

=
n∑
k=0

n∑
l=0

aklblk

=
n∑
l=0

n∑
k=0

blkakl

=
n∑
l=0

[BA]ll

= tr(BA)

7. The characteristic equation of the matrix is λ2− (a+ d)λ+ ad− bc = 0. The discriminant
of the equation is

(a+ d)2 − 4(ad− bc) = a2 − 2ad+ d2 + 4bc = (a− d)2 + 4bc.

Hence if the discriminant (a − d)2 + 4bc 6= 0, then the equation has two distinct roots.
This implies that the matrix has two distinct eigenvalues. Their associated eigenvectors
are linearly independent. Therefore the matrix is diagonalizable.

8. We have P−1AP = D1 and P−1BP = D2 are diagonal matrices. Thus

AB = (PD1P
−1)(PD2P

−1)

= PD1D2P
−1

= PD2D1P
−1

= (PD2P
−1)(PD1P

−1)

= BA

9. Suppose A is similar to a diagonal matrix D. Then Dk is similar to Ak = 0. This implies
that D = 0. It follows that A = 0 since the only matrix similar to the zero matrix is the
zero matrix.

10. We have A−1(AB)A = BA. Thus AB is similar to BA.

11. Let A =

(
0 1
0 0

)
and B =

(
0 0
0 1

)
. Then AB = A 6= 0 but BA = 0. So AB and

BA are not be similar.

12. We claim that the matrices

P =

(
0 0
A AB

)
and Q =

(
BA 0
A 0

)
are similar. Then by Theorem 5.2, the matrices P and Q have the same characteristic
polynomial which implies that AB and BA have the same characteristic polynomial. To
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prove the claim, we have(
I B
0 I

)−1(
BA 0
A 0

)(
I B
0 I

)
=

(
I −B
0 I

)(
BA 0
A 0

)(
I B
0 I

)
=

(
0 0
A 0

)(
I B
0 I

)
=

(
0 0
A AB

)
.

Caution! In general, AB and BA may not be similar.

Exercise 5.3

1. (a)

(
65 −66
33 −34

)
(b)

(
96 −96
64 −64

)
(c)

(
94 −93
62 −61

)
(d)

(
16 −80
16 −16

)

(e)

 16 32 −16
32 64 −32
48 96 −48


(f)

 1 −62 31
0 1 0
0 −62 32


(g)

 94 −93 31
62 −61 31
0 0 32


2. (a) Observe that AT ξ = ξ where ξ = (1, · · · , 1)T , we have AT has an eigenvalue λ = 1.

Therefore A has an eigenvalue λ = 1.

(b) Write A = [aij ], 1 ≤ i, j ≤ n. Let ξ = (x1, x2, · · · , xn)T be an eigenvector of AT

associated with λ = 1 and k be such that xk is maximum among x1, x2, · · · , xn. In
other words, xk ≥ xl for any l = 1, 2, · · · , n. Now consider the k-th row of AT ξ = ξ
and observe that the sum of the entries of each row of AT is 1, we have

xk = a1kx1 + a2kx2 + · · ·+ ankxn

≤ a1kxk + a2kxk + · · ·+ ankxk

= (a1k + a2k + · · ·+ ank)xk

= xk.

Thus the equality holds on above. It follows that for any l = 1, 2, · · · , n, we have
alkxl = alkxk which implies that xl = xk since alk 6= 0. So ξ is a multiple of (1, · · · , 1)T

and thus the eigenspace of AT associated with λ = 1 is of dimension 1. Therefore
the eiqenspace of A associated with λ = 1 is of dimension 1.

Exercise 5.4

1. (a) Minimal polynomial: (x− 1)(x− 2), A4 = 15A− 14I, A−1 = −1
2A + 3

2I

(b) Minimal polynomial: (x− 1)2, A4 = 4A− 3I, A−1 = −A + 2I

(c) Minimal polynomial: x2 − 2x+ 5, A4 = −12A + 5I, A−1 = −1
5A + 2

5I

(d) Minimal polynomial: (x− 2)(x− 1)2, A4 = 11A2− 18A + 8I, A−1 = 1
2A2− 2A + 5

2I

(e) Minimal polynomial: (x− 4)(x− 2), A4 = 120A− 224I, A−1 = −1
8A + 3

4I

(f) Minimal polynomial: (x− 1)2, A4 = 4A− 3I, A−1 = −A + 2I

(g) Minimal polynomial: (x+ 1)(x− 1), A4 = I, A−1 = A
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2. Suppose A and B are similar matrices. Then there exists non-singular matrix P such
that B = P−1AP. Now for any polynomial function p(x), we have p(B) = p(P−1AP) =
P−1p(A)P. It follows that p(B) = 0 if and only if p(A) = 0. Therefore A and B have
the same minimal polynomial.

3. The minimal polynomial m(x) of A divides xk − 1 = 0 which has no repeated factor. It
follows that m(x) is a product of distinct linear factors. Therefore A is diagonalizable by
Theorem 5.4.5.

4. Since A is diagonalizable, by Theorem 5.4.5, the minimal polynomial of A2 is

(x− λ1)(x− λ2) · · · (x− λk)

where λ1, λ2, · · · , λk are distinct eigenvalues of A2. In particular,

(A2 − λ1I)(A2 − λ2I) · · · (A2 − λkI) = 0.

Thus

(A−
√
λ1I)(A +

√
λ1I)(A−

√
λ2I)(A +

√
λ2I) · · · (A−

√
λkI)(A +

√
λkI) = 0.

It follows that the minimal polynomial of A divides

p(x) = (x−
√
λ1)(x+

√
λ1)(x−

√
λ2)(x+

√
λ2) · · · (x−

√
λk)(x+

√
λk).

Since A is non-singular, the values λ1, λ2, · · · , λk are all non-zero and thus p(x) has no
repeated factor. Therefore the minimal polynomial of A is a product of distinct linear
factor and A is diagonalizable by Theorem 5.4.5.

Exercise 6.2

1. (a)

{
x1 = c1e

−t + c2e
3t

x2 = −c1e−t + c2e
3t

(b)

{
x1 = c1e

−t + 3c2e
4t

x2 = −c1e−t + 2c2e
4t

(c)

{
x1 = 5c1 cos 2t+ 5c2 sin 2t

x2 = (c1 − 2c2) cos 2t+ (2c1 + c2) sin 2t

(d)

{
x1 = 3e2t(c1 cos 3t− c2 sin 3t)

x2 = e2t((c1 + c2) cos 3t+ (c1 − c2) sin 3t)

(e)


x1 = c1e

9t + c2e
6t + c3

x2 = c1e
9t − 2c2e

6t

x3 = c1e
9t + c2e

6t − c3

(f)


x1 = c1e

6t + c2e
3t + c3e

3t

x2 = c1e
6t − 2c2e

3t

x3 = c1e
6t + c2e

3t − c3e3t

(g)


x1 = c1e

t + c2(2 cos 2t− sin 2t) + c3(cos 2t+ 2 sin 2t)

x2 = −c1et − c2(3 cos 2t+ sin 2t) + c3(cos 2t− 3 sin 2t)

x3 = c2(3 cos 2t+ sin 2t) + c3(3 cos 2t− sin 2t)
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(h)


x1 = c1e

5t + (c2 + 2c3)e
t

x2 = c1e
5t − c2et

x3 = c1e
5t − c3et

2.
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(a)

{
x1 = 1

7(−e−t + 8e6t)

x2 = 1
7(e−t + 6e6t)

(b)

{
x1 = −5e3t + 6e4t

x2 = 6e3t − 6e4t

(c)

{
x1 = −4et sin 2t

x2 = 4et cos 2t

(d)


x1 = 4e3t − e−t(4 cos t− sin t)

x2 = 9e3t − e−t(9 cos t+ 2 sin t)

x3 = 17e−t cos t

3. (a) x = c1e
3t

(
1
1

)
+ c2e

−2t
(
−2
3

)
(b) x = c1

(
cos 2t

cos 2t+ 2 sin 2t

)
+ c2

(
sin 2t

−2 cos 2t+ sin 2t

)

(c) x = c1e
2t

 1
1
1

+ c2e
−t

 1
1
0

+ c3e
−2t

 0
1
1


(d) x = c1e

3t

 1
0
1

+ c2e
3t

 1
1
0

+ c3e
2t

 1
1
1


Exercise 6.3

1. (a) x = e−t
(
c1

(
1
−1

)
+ c2

(
1 + 2t
−2t

))
(b) x = e−3t

(
c1

(
1
−1

)
+ c2

(
1 + t
−t

))
(c) x = e2t

(
c1

(
1
1

)
+ c2

(
1 + t
t

))

(d) x = e−t

c1
 0

1
0

+ c2

 −2
−1 + t

1

+ c3

 1− 2t
−t+ 1

2 t
2

t


(e) x = e−t

c1
 1

0
0

+ c2

 t
2
1

+ c3

 1
2 t

2

1 + 2t
t


(f) x = et

c1
 3
−2
0

+ c2

 3
0
−2

+ c3

 1
−2t
2t


(g) x = e2t

c1
 1

1
0

+ c2

 3
0
1

+ c3

 1 + t
t
0


(h) x = e2t

c1
 1

0
1

+ c2

 1− t
−1

1− t

+ c3

 1 + t− 1
2 t

2

−t
t− 1

2 t
2


Exercise 6.4

1. (a) 1
7

(
3e5t + 4e−2t 3e5t − 3e−2t

4e5t − 4e−2t 4e5t + 3e−2t

)
(b)

(
2e3t − et −2e3t + 2et

e3t − et −e3t + 2et

)
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(c)

(
−2 + 3e2t 3− 3e2t

−2 + 2e2t 3− 2e2t

)
(d)

(
cos 2t sin 2t
− sin 2t cos 2t

)
(e)

(
1 3t
0 1

)

(f)

 −e2t + 2e3t 0 −e2t + e3t

2e2t − 2e3t et −et + 2e2t − e3t
2e2t − 2e3t 0 2e2t − e3t



(g)

 1 t t2

2
0 1 t
0 0 1


(h)

 1 −t t− 6t2

0 1 3t
0 0 1



2. (a)

(
−5et + 6e−3t

et − 6e−3t

)

(b)

(
2e4t + 2e−t

3e4t − 2e−t

)
(c)

 et + 2e−t

et − e−t
−2et + e−t


(d)

 1 + t+ 2t2

1 + 4t
−2


3. (a) By Cayley-Hamilton theorem, we have A2 − 2λA + (λ2 + µ2)I = 0. Thus

µ2J2 = (A− λI)2

= A2 − 2λA + λ2I

= −µ2I

Therefore J2 = −I.

(b) Now A = λI + µJ. Therefore

exp(At)

= exp((λI + µJ)t)

= exp(λIt) exp(µJt)

= eλtI(I + µJt+
1

2!
µ2J2t2 +

1

3!
µ3J3t3 +

1

4!
µ4J4t4 +

1

5!
µ5J5t5 + · · · )

= eλt(I + µJt− 1

2!
µ2It2 − 1

3!
µ3Jt3 +

1

4!
µ4It4 +

1

5!
µ5Jt5 + · · · )

= eλt(I(1− 1

2!
µ2t2 +

1

4!
µ4t2 + · · · ) + J(µt− 1

3!
µ3t3 +

1

5!
µ5t5 + · · · ))

= eλt(I cosµt+ J sinµt)

(c) (i)

(
cos t+ 2 sin t −5 sin t

sin t cos t− 2 sin t

)
(ii) et

(
cos 2t+ sin 2t − sin 2t

2 sin 2t cos 2t− sin 2t

)
Exercise 6.5

1. (a) J =

(
3 1
0 3

)
, exp(At) = e3t

(
1 + t −t
t 1− t

)
(b) J =

(
−3 1
0 −3

)
, exp(At) = e−3t

(
1 + 4t −4t

4t 1− 4t

)

(c) J =

 3 1 0
0 3 1
0 0 3

, exp(At) = e3t

 1 + 2t −t t

t+ t2 1− t2

2
t2

2

−3t+ t2 2t− t2

2 1− 2t+ t2

2
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(d) J =

 1 0 0
0 1 1
0 0 1

, exp(At) = et

 1− 3t −9t 0
t 1 + 3t 0
t 3t 1


(e) J =

 −2 1 0
0 −2 1
0 0 −2

, exp(At) = e−2t

 1 + t+ t2

2 t+ t2 t+ 3t2

2
t− t2 1 + 4t− 2t2 7t− 3t2

−t+ t2

2 −3t+ t2 1− 5t+ 3t2

2


(f) J =

 2 1 0
0 2 1
0 0 2

, exp(At) = e2t

 1 t2

2 −t+ t2

0 1 + 2t 4t
0 −t 1− 2t


(g) J =

 2 0 0
0 2 1
0 0 2

, exp(At) = e2t

 1− 3t 3t −9t
0 1 0
t −t 1 + 3t


(h) J =

 −1 0 0
0 2 1
0 0 2

,

exp(At) =

 (3 + 2t)e2t − 2e−t (4 + 3t)e2t − 4e−t (6 + 4t)e2t − 6e−t

−4te2t (1− 6t)e2t −8te2t

(−1 + 2t)e2t + e−t (−2 + 3t)e2t + 2e−t (−2 + 4t)e2t + 3e−t


Exercise 6.6

1. The answers are not unique.

(a)

(
e−t 2e2t

2e−t e2t

)
(b)

(
e−3t e2t

−4e−3t e2t

)
(c)

(
cos t+ 2 sin t −5 sin t

sin t cos t− 2 sin t

)
(d)

(
4e2t e−t

−e2t −e−t
)

(e) e−t
(

2 cos 2t −2 sin 2t
sin 2t cos 2t

)
(f) e−2t

(
3 3t+ 1
3 3t

)

(g)

 −4e−2t 3e−t 0
5e−2t −4e−t −e2t
7e−2t −2e−t e2t



(h)

 e−2t et e3t

−e−2t −4et 2e3t

−e−2t −et e3t


(i)

 0 e3t 0
2e5t 0 e3t

e5t −e3t e3t


(j) e2t

 1 1 + t t+ 1
2 t

2

2 2t 1 + t2

−1 −t −1
2 t

2


(k)

 0 e2t te2t

et e2t te2t

et 0 e2t


(l) e−2t

 1 −2 + t −2t+ t2

2
0 1 1 + t
0 1 t


2. (a)

(
4e2t − 2e−t −4e2t + 4e−t

−e2t + 2e−t e2t − 4e−t

)
(b) e5t

(
−t 1 + 5t

−1 + 2t 3− 10t

)

(c)

 2e3t 0 −e3t
2e3t − 2e5t 5e3t − 8e5t −3e3t + 4e5t

−5e5t 5e3t − 4e5t −2e3t + 2e5t
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(d) e2t

 1− 2t 1− 2t 2t
−1 + 3t− t2 −2 + 3t− t2 −2t+ t2

−5t+ t2 1− 5t+ t2 2 + 4t− t2


3. (a) We have QΨ is non-singular since both Q and Ψ are non-singular. Now QΨ is a

fundamental matrix for the system if and only if

dQΨ

dt
= AQΨ

⇔ Q
dΨ

dt
= AQΨ

⇔ QAΨ = AQΨ
⇔ QA = AQ.

(b) By differentiating Ψ−1Ψ = I, we have

d

dt
(Ψ−1Ψ) = 0

dΨ−1

dt
Ψ + Ψ−1

dΨ

dt
= 0

dΨ−1

dt
Ψ = −Ψ−1

dΨ

dt
dΨ−1

dt
= −Ψ−1

dΨ

dt
Ψ−1.

Now

d

dt
(ΨT )−1 = (

dΨ−1

dt
)T

= −(Ψ−1
dΨ

dt
Ψ−1)T

= −(Ψ−1AΨΨ−1)T

= −(Ψ−1A)T

= −AT (Ψ−1)T

= −AT (ΨT )−1

and (ΨT )−1 is non-singular. Therefore (ΨT )−1 is a fundamental matrix for the system
x′ = −ATx.

4. Write
Ψ1 =

[
x(1) x(2) · · · x(n)

]
and Ψ2 =

[
y(1) y(2) · · · y(n)

]
,

then {x(1),x(2), · · · ,x(n)} and {y(1),y(2), · · · ,y(n)} constitute two fundamental sets of so-
lutions to the system. In particular for any i = 1, 2, · · · , n,

y(i) = p1ix
(1) + p2ix

(2) + · · ·+ pnix
(n), for some constants p1i, p2i, · · · , pni.

Now let

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 ,

we have Ψ2 = Ψ1P. The matrix P must be non-singular, otherwise Ψ2 cannot be non-
singular.



Answers to exercises 170

Alternative solution: We have

dΨ−11 Ψ2

dt
=

dΨ−11

dt
Ψ2 + Ψ−11

dΨ2

dt

= −Ψ−11

dΨ1

dt
Ψ−11 Ψ2 + Ψ−11 AΨ2

= −Ψ−11 AΨ1Ψ
−1
1 Ψ2 + Ψ−11 AΨ2

= −Ψ−11 AΨ2 + Ψ−11 AΨ2

= 0

Therefore Ψ−11 Ψ2 = P is a non-singular constant matrix and the result follows.

Exercise 6.7

1. (a) x = e5t
(
−1
1

)
(b) x = 1

2e
t

(
1
0

)
− e−2t

(
0
1

)
(c) x = et

(
1− 3t
4− 3t

)
(d) x = et

(
2t

2t+ 1

)
(e) x = 1

4e
t

(
6t− 1
6t− 3

)
+

(
t

2t− 1

)
(f) x = 1

2

(
−5 cos t− 5t sin t

(t− 2) cos t− 2t sin t

)
2. (a) xp(t) = e5ta

(b) xp(t) = e−2ta + etb

(c) xp(t) = et(ta + b)

(d) xp(t) = et(ta + b)

(e) xp(t) = et(ta + b) + tc + d

(f) xp(t) = t(cos ta + sin tb) + cos tc + sin td
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