THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5220 Complex Analysis and its Applications 2014-2015
Test 1, 11 Feb, 2015

- Time allowed: 45 minutes
- Answer all questions.
- Show your work clearly and concisely in your answer book.
- Write down your name and student ID number on the front page of your answer book.
- You are allowed to use a calculator in this test.

1. (a) If $f^{\prime}(z)=0$ for every $z \in \mathbb{C}$, by considering the Cauchy-Riemann equations, show that $f(z)$ is a constant.
(b) By considering the derivative of the function $f(z)=\sin ^{2} z+\cos ^{2} z$, prove that

$$
\sin ^{2} z+\cos ^{2} z \equiv 1
$$

2. Solve
(a) $\sin z+\cos z=2$.
(b) $\log \left(e^{z}\right)=2$.
3. Suppose that C is the circle $|z|=2$ oriented in the counterclockwise direction. By using $M L$ estimate, show that

$$
\left|\int_{C} \frac{e^{z}}{z^{2}+1} d z\right| \leq \frac{4 \pi e^{2}}{3}
$$

4. Let $f(z)=f(x+y i)=\sqrt{|x y|}$.
(a) Show that the Cauchy-Riemann equations are satisfied at the point $(0,0)$.
(b) Show that f is not differentiable at $z=0$.
