MATH5011 Exercise 9

(1) Optional. Let \mathfrak{M} be the collection of all sets E in the unit interval $[0,1]$ such that either E or its complement is at most countable. Let μ be the counting measure on this σ-algebra \mathfrak{M}. If $g(x)=x$ for $0 \leq x \leq 1$, show that g is not \mathfrak{M}-measurable, although the mapping

$$
f \mapsto \sum x f(x)=\int f g d \mu
$$

makes sense for every $f \in L^{1}(\mu)$ and defines a bounded linear functional on $L^{1}(\mu)$. Thus $\left(L^{1}\right)^{*} \neq L^{\infty}$ in this situation.
Solution: g is not \mathfrak{M}-measurable because $g^{-1}\left(\frac{1}{4}, \frac{3}{4}\right)=\left(\frac{1}{4}, \frac{3}{4}\right) \notin \mathfrak{M}$. The functional $\Lambda f=\sum x f(x)$ is clearly linear. To see that it is bounded, if $f \in L^{1}(\mu)$, then f is non-zero on an at most countable set $\left\{x_{i}\right\}$ and by integrability,

$$
\sum_{i=1}\left|f\left(x_{i}\right)\right|<\infty
$$

Thus Λf is well defined as g is a bounded function. Hence the operator is bounded.
(2) Optional. Let $L^{\infty}=L^{\infty}(m)$, where m is Lebesgue measure on $I=[0,1]$. Show that there is a bounded linear functional $\Lambda \neq 0$ on L^{∞} that is 0 on $C(I)$, and therefore there is no $g \in L^{1}(m)$ that satisfies $\Lambda f=\int_{I} f g d m$ for every $f \in L^{\infty}$. Thus $\left(L^{\infty}\right)^{*} \neq L^{1}$.

Solution: Method 1. For any $x \in I$ take $\Lambda_{x} f=g\left(x_{+}\right)-g\left(x_{-}\right)$for all f such that $f=g$ a.e. for some function g such that the two one-sided limits $g\left(x_{+}\right)$ and $g\left(x_{-}\right)$both exist. Then $\left\|\Lambda_{x}-\Lambda_{y}\right\| \geq 1$ for $x \neq y$. With reference to the question, we can just take $x=1 / 2$.
Method 2. Consider $\chi_{\left[0, \frac{1}{2}\right]} \in L^{\infty} \backslash C(I)$, as $C(I)$ is closed subspace in L^{∞},
by consequence of Hahn-Banach Theorem (thm 3.11 in p. 38 of lecture notes on functional analysis.), there is non-zero bounded linear functional Λ on L^{∞} which is zero on $C(I)$.
If there is $g \in L^{1}(m)$ that satisfies $\Lambda f=\int_{I} f g d m$ for every $f \in L^{\infty}$,

$$
\Lambda f=\int_{I} f g d m=0, \forall f \in C(I) \Rightarrow g=0
$$

we have $\Lambda=0$ which is impossible.
(3) Prove Brezis-Lieb lemma for $0<p \leq 1$.

Hint: Use $|a+b|^{p} \leq|a|^{p}+|b|^{p}$ in this range.
Solution: Taking $g_{n}=f_{n}-f$ as a and f as b,

$$
\left|\left|f+g_{n}\right|^{p}-\left|g_{n}\right|^{p}\right| \leq|f|^{p},
$$

or,

$$
-|f|^{p} \leq\left|f+g_{n}\right|^{p}-\left|g_{n}\right|^{p} \leq|f|^{p}
$$

we have

$$
-2|f|^{p} \leq\left|f+g_{n}\right|^{p}-\left|g_{n}\right|^{p}-|f|^{p} \leq 0
$$

which implies

$$
\left|\left|f+g_{n}\right|^{p}-\left|g_{n}\right|^{p}-|f|^{p}\right| \leq 2|f|^{p},
$$

and result follows from Lebesgue dominated convergence theorem.
(4) Let $f_{n}, f \in L^{p}(\mu), 0<p<\infty, f_{n} \rightarrow f$ a.e., $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$. Show that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Solution: Using the Brezis-Lieb lemma for $0<p<\infty$, we have

$$
\begin{aligned}
\left\|f_{n}-f\right\|_{p}^{p} & =\int_{X}\left|f_{n}-f\right|^{p} d \mu \\
& \leq \int_{X}\left(\left|f_{n}-f\right|^{p}-\left(\left|f_{n}\right|^{p}-|f|^{p}\right)\right) d \mu+\int_{X}\left(\left|f_{n}\right|^{p}-|f|^{p}\right) d \mu \\
& \leq \int_{X} \| f_{n}-\left.f\right|^{p}-\left(\left|f_{n}\right|^{p}-|f|^{p}\right) \mid d \mu+\left(\left\|f_{n}\right\|_{p}^{p}-\|f\|_{p}^{p}\right) \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
(5) Suppose μ is a positive measure on $X, \mu(X)<\infty, f_{n} \in L^{1}(\mu)$ for $n=$ $1,2,3, \ldots, f_{n}(x) \rightarrow f(x)$ a.e., and there exists $p>1$ and $C<\infty$ such that $\int_{X}\left|f_{n}\right|^{p} d \mu<C$ for all n. Prove that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f-f_{n}\right| d \mu=0
$$

Hint: $\left\{f_{n}\right\}$ is uniformly integrable.
Solution: By Vitali's convergence Theorem, it suffices to prove that $\left\{f_{n}\right\}$ is uniformly integrable. Let q be conjugate to p. By Hölder inequality,

$$
\begin{aligned}
\int_{E}\left|f_{n}\right| d \mu & \leq\left\|f_{n}\right\|_{p}\{\mu(E)\}^{\frac{1}{q}} \\
& \leq C^{\frac{1}{p}}\{\mu(E)\}^{\frac{1}{q}}
\end{aligned}
$$

for any measurable E. Now the result follows easily.
(6) We have the following version of Vitali's convergence theorem. Let $\left\{f_{n}\right\} \subset$ $L^{p}(\mu), 1 \leq p<\infty$. Then $f_{n} \rightarrow f$ in L^{p}-norm if and only if
(i) $\left\{f_{n}\right\}$ converges to f in measure,
(ii) $\left\{\left|f_{n}\right|^{p}\right\}$ is uniformly integrable, and
(iii) $\forall \varepsilon>0, \exists$ measurable $E, \mu(E)<\infty$, such that $\int_{X \backslash E}\left|f_{n}\right|^{p} d \mu<\varepsilon, \forall n$.

I found this statement from PlanetMath. Prove or disprove it.
Solution: Let $\varepsilon>0$. By (iii), there exists a set E of finite measure (WLOG assume positive measure) such that

$$
\int_{\widetilde{E}}\left|f_{n}\right|^{p}<\varepsilon
$$

Since $\left\{f_{n}\right\}$ converges to f in measure, there is a subsequence $\left\{f_{n_{k}}\right\}$ which converges to f pointwisely a.e.. By Fatou's Lemma,

$$
\int_{\widetilde{E}}|f|^{p}<\varepsilon
$$

By (ii), there exists $\delta>0$ such that whenever $\mu(A)<\delta$,

$$
\int_{A}\left|f_{n}\right|^{p}<\varepsilon^{\frac{1}{p}}
$$

WLOG, by choosing a smaller δ, we may assume further whenever $\mu(A)<\delta$

$$
\int_{A}|f|^{p}<\varepsilon^{\frac{1}{p}}
$$

because there is a subsequence $\left\{f_{n_{k}}\right\}$ which converges to f pointwisely a.e. and we can apply Fatou's Lemma, By (i), there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$
\mu\left\{x \in E: \left.\left|\left(f_{n}-f\right)(x)\right|^{p} \geq \frac{\varepsilon}{\mu(E)} \right\rvert\,\right\}<\delta
$$

Now, for $n \geq \mathbb{N}$, define $A_{n}=\left\{x \in E:\left|\left(f_{n}-f\right)(x)\right|^{p} \geq \frac{\varepsilon}{\mu(E)}\right\}$ and $B_{n}=E \backslash A_{n}$,
and we have

$$
\begin{aligned}
\int\left|f_{n}-f\right|^{p} & =\int_{\widetilde{E}}\left|f_{n}-f\right|^{p}+\int_{E}\left|f_{n}-f\right|^{p} \\
& <2^{p} \varepsilon+\int_{A_{n}}\left|f_{n}-f\right|^{p}+\int_{B_{n}}\left|f_{n}-f\right|^{p} \\
& <2^{p} \varepsilon+\left(\int_{A_{n}}\left|f_{n}\right|^{p}+\int_{A_{n}}|f|^{p}\right)^{p}+\varepsilon \\
& <2^{p} \varepsilon+2^{p} \varepsilon+\varepsilon=\left(2^{p+1}+1\right) \varepsilon .
\end{aligned}
$$

This completes the proof.
(7) Let $\left\{x_{n}\right\}$ be bounded in some normed space X. Suppose for Y dense in X^{\prime}, $\Lambda x_{n} \rightarrow \Lambda x, \forall \Lambda \in Y$ for some x. Deduce that $x_{n} \rightharpoonup x$.

Solution: Since $\left\{x_{n}\right\}$ is bounded, there exists $M>0$ such that $\left\|x_{n}\right\| \leq M$. Write $M_{1}=\max \{M,\|x\|\}$.

Given $\varepsilon>0$ and $\Lambda \in X^{\prime}$, choose $\Lambda_{1} \in Y$ such that $\left\|\Lambda-\Lambda_{1}\right\|<\frac{\varepsilon}{3 M_{1}}$ and choose N large such that $\left|\Lambda x_{n}-\Lambda x\right|<\frac{\varepsilon}{3}$. Then

$$
\begin{aligned}
\left|\Lambda x_{n}-\Lambda x\right| & =\left|\Lambda x_{n}-\Lambda_{1} x_{n}\right|+\left|\Lambda_{1} x_{n}-\Lambda_{1} x\right|+\left|\Lambda_{1} x-\Lambda x\right| \\
& \leq \frac{\varepsilon}{3 M_{1}} M+\frac{\varepsilon}{3}+\frac{\varepsilon}{3 M_{1}}\|x\| \\
& <\varepsilon .
\end{aligned}
$$

(8) Consider $f_{n}(x)=n^{1 / p} \chi(n x)$ in $L^{p}(\mathbb{R})$. Then $f_{n} \rightharpoonup 0$ for $p>1$ but not for $p=1$. Here $\chi=\chi_{[0,1]}$.

Solution: For $1<p<\infty$, let q be the conjugate exponent and let $g \in L^{q}(\mathbb{R})$.

By Hölder's inequality and Lebesgue's dominated convergence theorem,

$$
\begin{aligned}
\int_{\mathbb{R}} f_{n} g d x & =\int_{0}^{\frac{1}{n}} n^{1 / p} g(x) d x \\
& \leq\left(\int_{0}^{\frac{1}{n}}\left(n^{1 / p}\right)^{p} d x\right)^{\frac{1}{p}}\left(\int_{0}^{\frac{1}{n}}|g(x)|^{q} d x\right)^{\frac{1}{q}} \\
& \leq\left(\int_{\mathbb{R}} \chi_{\left[0, \frac{1}{n}\right]}|g(x)|^{q} d x\right)^{\frac{1}{q}} \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Hence, $f_{n} \rightharpoonup 0$.
For $p=1$, take $g \equiv 1$ in $L^{\infty}(\mathbb{R})$. Then

$$
\int_{\mathbb{R}} f_{n} g d x=n \int_{0}^{\frac{1}{n}} d x=1
$$

Hence, $f_{n} \nrightarrow 0$.
(9) Let $\left\{f_{n}\right\}$ be bounded in $L^{p}(\mu), 1<p<\infty$. Prove that if $f_{n} \rightarrow f$ a.e., then $f_{n} \rightharpoonup f$. Is this result still true when $p=1$?

Solution: It suffices to show that for any $g \in L^{q}(\mu)$,

$$
\int\left(f_{n}-f\right) g d \mu \rightarrow 0 \text { as } n \rightarrow \infty
$$

By Prop 4.14 the density theorem, we may consider the case where g is a simple function with finite support. Let E be a finite measure set such that $g=0$ outside E and $M>0$ be bound of g. By the solution to Problem 5, $\left\{f_{n}, f\right\}$ is uniformly integrable, for all $\varepsilon>0, \exists \delta>0$, s.t. for any A measurable s.t $\mu(A)<\delta$,

$$
\int_{A}|h| d \mu<\varepsilon, h=f_{n} \text { or } f .
$$

By Egorov's Theorem, there is a measurable B s.t $\mu(E \backslash B)<\delta$ and f_{n}
converges uniformly to f on B. Hence

$$
\begin{aligned}
\left|\int\left(f_{n}-f\right) g d \mu\right| & =\left|\int_{E}\left(f_{n}-f\right) g d \mu\right| \\
& =\left|\int_{E \backslash B}\left(f_{n}-f\right) g d \mu\right|+\left|\int_{B}\left(f_{n}-f\right) g d \mu\right| \\
& <2 M \varepsilon+\left|\int_{B}\left(f_{n}-f\right) g d \mu\right| \\
& <(2 M+1) \varepsilon, \text { for large } \mathrm{n} .
\end{aligned}
$$

For $\mathrm{p}=1$, the result is false by Problem 8 .
(10) Provide a proof of Proposition 5.3.

Solution:

(a) Let $E=\bigcup^{\circ} E_{j} \in \mathfrak{M}$. If λ is concentrated on A, then $\lambda\left(E_{j}\right)=\lambda\left(E_{j} \cap A\right)$, and so

$$
\begin{aligned}
|\lambda|(E) & =\sup \left\{\sum\left|\lambda\left(E_{j}\right)\right|: E=\bigcup^{\circ} E_{j}, E_{j} \in \mathfrak{M}\right\} \\
& =\sup \left\{\sum\left|\lambda\left(E_{j} \cap A\right)\right|: E \cap A=\bigcup^{\circ}\left(E_{j} \cap A\right), E_{j} \in \mathfrak{M}\right\} \\
& =|\lambda|(E \cap A)
\end{aligned}
$$

(b) If $\lambda_{1} \perp \lambda_{2}$, then λ_{j} is concentrated on some $A_{j}(j=1,2)$ with $A_{1} \cap A_{2}=$ \emptyset. By part (a), $\left|\lambda_{j}\right|$ is concentrated on A_{j}. Therefore, $\left|\lambda_{1}\right| \perp\left|\lambda_{2}\right|$.
(c) Suppose μ is concentrated on A. If $\lambda_{1} \perp \mu$ and $\lambda_{2} \perp \mu$, then $\lambda_{1}(A)=$ $\lambda_{2}(A)=0$, which implies $\left(\lambda_{1}+\lambda_{2}\right)(A)=0$. Hence, $\lambda_{1}+\lambda_{2} \perp \mu$.
(d) Suppose $\mu(E)=0$. If $\lambda_{1} \ll \mu$ and $\lambda_{2} \ll \mu$, then $\lambda_{1}(E)=\lambda_{2}(E)=0$, which implies $\left(\lambda_{1}+\lambda_{2}\right)(E)=0$. Hence, $\lambda_{1}+\lambda_{2} \ll \mu$.
(e) Let $E=\bigcup^{\circ} E_{j}$ and suppose $\mu(E)=0$. Then $E_{j} \subset E$ implies $\mu\left(E_{j}\right)=0$. If $\lambda \ll \mu$, then $\lambda\left(E_{j}\right)=0$. Therefore, $\sum\left|\lambda\left(E_{j}\right)\right|=0$ and it follows that $|\lambda|(E)=0$.
(f) Suppose λ_{2} is concentrated on A. If $\lambda_{2} \perp \mu$, then $\mu(A)=0$, which implies $\lambda_{1}(A)=0$ by $\lambda_{1} \ll \mu$. Hence, $\lambda_{1} \perp \lambda_{2}$.
(g) By part (f), $\lambda \perp \lambda$. This is impossible unless $\lambda=0$.
(11) Show that $M(X)$, the space of all signed measures defined on (X, \mathfrak{M}), forms a Banach space under the norm $\|\mu\|=|\mu|(X)$.

Solution: It is clear that the $M(X)$ is a normed vector space if the norm is defined as in the question.

Recall the fact that a normed vector space is a Banach space if and only if every absolutely summable sequence is summable. Let $\left\{\mu_{k}\right\}$ be an absolutely summable sequence. Let E be a measurable set. We immediately have

$$
\sum_{k=1}^{\infty}\left|\mu_{k}(E)\right| \leq \sum_{k=1}^{\infty}\left|\mu_{k}\right|(E) \leq \sum_{k=1}^{\infty}\left|\mu_{k}\right|(X)<\infty
$$

hence $\sum \mu_{k}(E)$ converges absolutely. $\forall E \in \mathfrak{M}$, put

$$
\mu(E)=\sum_{k=1}^{\infty} \mu_{k}(E)
$$

which exists as a real number by the above argument. We will prove the countable additivity. Let E_{n} be a sequence of pairwise disjoint measurable sets. Then

$$
\begin{aligned}
\mu\left(\bigcup E_{n}\right) & =\sum_{k=1}^{\infty} \mu_{k}\left(\bigcup E_{n}\right) \\
& =\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \mu_{k}\left(E_{n}\right) \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu_{k}\left(E_{n}\right) \text { (by absolute convergence) } \\
& =\sum_{n=1}^{\infty} \mu\left(E_{n}\right)
\end{aligned}
$$

We have proved that μ is a signed measure. To show that μ_{n} converges to μ in $\|\cdot\|$, let X_{n} be a partition of X.

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\left(\mu-\sum_{k=1}^{m} \mu_{k}\right)\left(X_{n}\right)\right| & =\left|\sum_{n=1}^{\infty} \sum_{k=m}^{\infty} \mu_{k}\left(X_{n}\right)\right| \\
& \leq \sum_{k=m}^{\infty} \sum_{n=1}^{\infty}\left|\mu_{k}\left(X_{n}\right)\right| \\
& \leq \sum_{k=m}^{\infty}\left|\mu_{k}\right|(X)=\sum_{k=m}^{\infty}\left\|\mu_{k}\right\| \rightarrow 0
\end{aligned}
$$

so that $\left\|\sum \mu_{k}-\mu\right\| \rightarrow 0$ as $k \rightarrow \infty$.
(12) Let \mathcal{L}^{1} be the Lebesgue measure on $(0,1)$ and μ the counting measure on $(0,1)$. Show that $\mathcal{L}^{1} \ll \mu$ but there is no $h \in L^{1}(\mu)$ such that $d \mathcal{L}^{1}=h d \mu$. Why?

Solution: If $\mu(E)=0$, then $E=\phi$, which implies $\mathcal{L}^{1}(E)=0$. Hence, $\mathcal{L}^{1} \ll \mu$.
Suppose on the contrary, that $\exists h \in L^{1}(\mu)$ such that $d \mathcal{L}^{1}=\int h d \mu$. Since $h \in L^{1}(\mu), h=0$ except on a countable set. It follows that $\mathcal{L}^{1}(\{h=0\})=1$. However,

$$
\mathcal{L}^{1}(\{h=0\})=\int_{\{h=0\}} h d \mu=0
$$

This is a contradiction. Radon-Nikodym theorem does not apply here because μ is not σ-finite.
(13) Let μ be a measure and λ a signed measure on (X, \mathfrak{M}). Show that $\lambda \ll \mu$ if and only if $\forall \varepsilon>0$, there is some $\delta>0$ such that $|\lambda(E)|<\varepsilon$ whenever $|\mu(E)|<\delta, \forall E \in \mathfrak{M}$.

Solution: (\Leftarrow) Suppose $\mu(E)=0$. By the hypothesis, for all $\varepsilon>0,|\lambda(E)|<$ ε. This implies $\lambda(E)=0$, hence $\lambda \ll \mu$.
(\Rightarrow) Suppose on the contrary that $\exists \varepsilon_{0}>0$ such that $\forall n \in \mathbb{N}, \exists E \in \mathfrak{M}$ with

$$
\begin{gathered}
\mu(E)<2^{-n} \text { such that } \lambda(E)<\varepsilon . \text { Put } E=\bigcap_{n \in \mathbb{N} k \geq n} \bigcup_{k} E_{k} . \text { Then } \mu(E)=0 \text { but } \\
\qquad \lambda(E)=\lim _{n \rightarrow \infty} \lambda\left(\bigcup_{k \geq n} E_{k}\right) \geq \varepsilon_{0}>0 .
\end{gathered}
$$

This contradicts the fact that $\lambda \ll \mu$.
(14) Let μ be a σ-finite measure and λ a signed measure on (X, \mathfrak{M}) satisfying $\lambda \ll \mu$. Show that

$$
\int f d \lambda=\int f h d \mu, \quad \forall f \in L^{1}(\lambda), \quad f h \in L^{1}(\mu)
$$

where $h=\frac{d \lambda}{d \mu} \in L^{1}(\mu)$.

Solution

Step 1. $f=\chi_{E}$ for some $E \in \mathfrak{M}$.
We have

$$
\int_{X} \chi_{E} d \lambda=\lambda(E)=\int_{E} h d \mu=\int_{X} \chi_{E} h d \mu .
$$

Step 2. f is a simple function. This follows directly from Step 1.

Step 3. $f \geq 0$ is measurable.
Pick $0 \leq s_{n} \nearrow f$. Then $0 \leq s_{n} h \nearrow f h$ on $\{h \geq 0\}$ and $0 \leq-s_{n} h \nearrow$
$-f h$ on $\{h<0\}$. Hence,

$$
\begin{aligned}
\int_{X} f d \lambda & =\int_{h \geq 0} f d \lambda-\int_{h<0}-f d \lambda \\
& =\sup _{0 \leq s \leq f} \int_{h \geq 0} s d \lambda-\sup _{0 \leq s \leq f} \int_{h<0}-s d \lambda \\
& =\sup _{0 \leq s \leq f} \int_{h \geq 0} s h d \mu-\sup _{0 \leq s \leq f} \int_{h<0}-s h d \mu(\text { by Step 2) } \\
& =\int_{h \geq 0} f h_{+} d \mu-\int_{h<0} f h_{-} d \mu \\
& =\int_{X} f\left(h_{+}-h_{-}\right) d \mu \\
& =\int_{X} f h d \mu .
\end{aligned}
$$

Step 4. $f \in L^{1}(\lambda)$.
Writing $f=f_{+}-f_{-}$, the result follows from Step 3.
(15) Let μ, λ and ν be finite measures, $\mu \gg \lambda \gg \nu$. Show that $\frac{d \nu}{d \mu}=\frac{d \nu}{d \lambda} \frac{d \lambda}{d \mu}, \mu$ a.e.

Solution: By (14), we have for all measurable sets E,

$$
\nu(E)=\int_{E} \frac{d \nu}{d \lambda} d \lambda=\int_{E} \frac{d \nu}{d \lambda} \frac{d \lambda}{d \mu} d \mu
$$

The result follows from the uniqueness of the Radon-Nikodym derivative.

