MATH5011 Exercise 9

Optional. Let M be the collection of all sets E in the unit interval [0, 1] such that either E or its complement is at most countable. Let μ be the counting measure on this σ-algebra M. If g(x) = x for 0 ≤ x ≤ 1, show that g is not M-measurable, although the mapping

$$f \mapsto \sum x f(x) = \int f g \, d\mu$$

makes sense for every $f \in L^1(\mu)$ and defines a bounded linear functional on $L^1(\mu)$. Thus $(L^1)^* \neq L^{\infty}$ in this situation.

Solution: g is not \mathfrak{M} -measurable because $g^{-1}\left(\frac{1}{4}, \frac{3}{4}\right) = \left(\frac{1}{4}, \frac{3}{4}\right) \notin \mathfrak{M}$. The functional $\Lambda f = \sum x f(x)$ is clearly linear. To see that it is bounded, if $f \in L^1(\mu)$, then f is non-zero on an at most countable set $\{x_i\}$ and by integrability,

$$\sum_{i=1} |f(x_i)| < \infty.$$

Thus Λf is well defined as g is a bounded function. Hence the operator is bounded.

(2) Optional. Let $L^{\infty} = L^{\infty}(m)$, where *m* is Lebesgue measure on I = [0, 1]. Show that there is a bounded linear functional $\Lambda \neq 0$ on L^{∞} that is 0 on C(I), and therefore there is no $g \in L^1(m)$ that satisfies $\Lambda f = \int_I fg \, dm$ for every $f \in L^{\infty}$. Thus $(L^{\infty})^* \neq L^1$.

Solution: Method 1. For any $x \in I$ take $\Lambda_x f = g(x_+) - g(x_-)$ for all f such that f = g a.e. for some function g such that the two one-sided limits $g(x_+)$ and $g(x_-)$ both exist. Then $\|\Lambda_x - \Lambda_y\| \ge 1$ for $x \ne y$. With reference to the question, we can just take x = 1/2.

Method 2. Consider $\chi_{[0,\frac{1}{2}]} \in L^{\infty} \setminus C(I)$, as C(I) is closed subspace in L^{∞} ,

by consequence of Hahn-Banach Theorem (thm 3.11 in p.38 of lecture notes on functional analysis.), there is non-zero bounded linear functional Λ on L^{∞} which is zero on C(I).

If there is
$$g \in L^1(m)$$
 that satisfies $\Lambda f = \int_I fg \, dm$ for every $f \in L^\infty$,

$$\Lambda f = \int_{I} fg \, dm = 0, \forall f \in C(I) \Rightarrow g = 0.$$

we have $\Lambda = 0$ which is impossible.

(3) Prove Brezis-Lieb lemma for 0 . $Hint: Use <math>|a + b|^p \le |a|^p + |b|^p$ in this range.

Solution: Taking $g_n = f_n - f$ as a and f as b,

$$||f + g_n|^p - |g_n|^p| \le |f|^p$$
,

or,

$$-|f|^{p} \le |f + g_{n}|^{p} - |g_{n}|^{p} \le |f|^{p}.$$

we have

$$-2|f|^{p} \le |f + g_{n}|^{p} - |g_{n}|^{p} - |f|^{p} \le 0$$

which implies

$$||f + g_n|^p - |g_n|^p - |f|^p| \le 2 |f|^p$$
,

and result follows from Lebesgue dominated convergence theorem.

(4) Let $f_n, f \in L^p(\mu), 0 a.e., <math>||f_n||_p \to ||f||_p$. Show that $||f_n - f||_p \to 0.$

Solution: Using the Brezis-Lieb lemma for 0 , we have

$$\begin{aligned} \|f_n - f\|_p^p &= \int_X |f_n - f|^p \ d\mu \\ &\leq \int_X (|f_n - f|^p - (|f_n|^p - |f|^p)) \ d\mu + \int_X (|f_n|^p - |f|^p) \ d\mu \\ &\leq \int_X ||f_n - f|^p - (|f_n|^p - |f|^p)| \ d\mu + \left(\|f_n\|_p^p - \|f\|_p^p \right) \\ &\to 0 \end{aligned}$$

as $n \to \infty$.

(5) Suppose μ is a positive measure on X, $\mu(X) < \infty$, $f_n \in L^1(\mu)$ for $n = 1, 2, 3, \ldots, f_n(x) \to f(x)$ a.e., and there exists p > 1 and $C < \infty$ such that $\int_X |f_n|^p d\mu < C$ for all n. Prove that

$$\lim_{n \to \infty} \int_X |f - f_n| \, d\mu = 0.$$

Hint: $\{f_n\}$ is uniformly integrable.

Solution: By Vitali's convergence Theorem, it suffices to prove that $\{f_n\}$ is uniformly integrable. Let q be conjugate to p. By Hölder inequality,

$$\int_{E} |f_{n}| d\mu \leq \|f_{n}\|_{p} \{\mu(E)\}^{\frac{1}{q}} \\ \leq C^{\frac{1}{p}} \{\mu(E)\}^{\frac{1}{q}},$$

for any measurable E. Now the result follows easily.

- (6) We have the following version of Vitali's convergence theorem. Let $\{f_n\} \subset L^p(\mu), 1 \leq p < \infty$. Then $f_n \to f$ in L^p -norm if and only if
 - (i) $\{f_n\}$ converges to f in measure,
 - (ii) $\{|f_n|^p\}$ is uniformly integrable, and

(iii)
$$\forall \varepsilon > 0, \exists \text{ measurable } E, \mu(E) < \infty, \text{ such that } \int_{X \setminus E} |f_n|^p d\mu < \varepsilon, \forall n.$$

I found this statement from PlanetMath. Prove or disprove it.

Solution: Let $\varepsilon > 0$. By (iii), there exists a set *E* of finite measure (WLOG assume positive measure) such that

$$\int_{\widetilde{E}} |f_n|^p < \varepsilon.$$

Since $\{f_n\}$ converges to f in measure, there is a subsequence $\{f_{n_k}\}$ which converges to f pointwisely a.e.. By Fatou's Lemma,

$$\int_{\widetilde{E}} |f|^p < \varepsilon.$$

By (ii), there exists $\delta > 0$ such that whenever $\mu(A) < \delta$,

$$\int_A |f_n|^p < \varepsilon^{\frac{1}{p}};$$

WLOG, by choosing a smaller δ , we may assume further whenever $\mu(A) < \delta$

$$\int_A |f|^p < \varepsilon^{\frac{1}{p}}$$

because there is a subsequence $\{f_{n_k}\}$ which converges to f pointwisely a.e. and we can apply Fatou's Lemma, By (i), there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$\mu\{x \in E: \left| (f_n - f)(x) \right|^p \ge \frac{\varepsilon}{\mu(E)} | \} < \delta$$

Now, for $n \ge \mathbb{N}$, define $A_n = \{x \in E : |(f_n - f)(x)|^p \ge \frac{\varepsilon}{\mu(E)}\}$ and $B_n = E \setminus A_n$,

and we have

$$\begin{split} \int |f_n - f|^p &= \int_{\widetilde{E}} |f_n - f|^p + \int_E |f_n - f|^p \\ &< 2^p \varepsilon + \int_{A_n} |f_n - f|^p + \int_{B_n} |f_n - f|^p \\ &< 2^p \varepsilon + \left(\int_{A_n} |f_n|^p + \int_{A_n} |f|^p \right)^p + \varepsilon \\ &< 2^p \varepsilon + 2^p \varepsilon + \varepsilon = (2^{p+1} + 1)\varepsilon. \end{split}$$

This completes the proof.

(7) Let $\{x_n\}$ be bounded in some normed space X. Suppose for Y dense in X', $\Lambda x_n \to \Lambda x, \forall \Lambda \in Y$ for some x. Deduce that $x_n \rightharpoonup x$.

Solution: Since $\{x_n\}$ is bounded, there exists M > 0 such that $||x_n|| \le M$. Write $M_1 = \max\{M, ||x||\}$.

Given $\varepsilon > 0$ and $\Lambda \in X'$, choose $\Lambda_1 \in Y$ such that $\|\Lambda - \Lambda_1\| < \frac{\varepsilon}{3M_1}$ and choose N large such that $|\Lambda x_n - \Lambda x| < \frac{\varepsilon}{3}$. Then

$$\begin{split} |\Lambda x_n - \Lambda x| &= |\Lambda x_n - \Lambda_1 x_n| + |\Lambda_1 x_n - \Lambda_1 x| + |\Lambda_1 x - \Lambda x| \\ &\leq \frac{\varepsilon}{3M_1} M + \frac{\varepsilon}{3} + \frac{\varepsilon}{3M_1} \|x\| \\ &< \varepsilon. \end{split}$$

(8) Consider $f_n(x) = n^{1/p}\chi(nx)$ in $L^p(\mathbb{R})$. Then $f_n \to 0$ for p > 1 but not for p = 1. Here $\chi = \chi_{[0,1]}$.

Solution: For $1 , let q be the conjugate exponent and let <math>g \in L^q(\mathbb{R})$.

By Hölder's inequality and Lebesgue's dominated convergence theorem,

$$\begin{split} \int_{\mathbb{R}} f_n g \, dx &= \int_0^{\frac{1}{n}} n^{1/p} g(x) \, dx \\ &\leq \left(\int_0^{\frac{1}{n}} (n^{1/p})^p \, dx \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{n}} |g(x)|^q \, dx \right)^{\frac{1}{q}} \\ &\leq \left(\int_{\mathbb{R}} \chi_{[0,\frac{1}{n}]} |g(x)|^q \, dx \right)^{\frac{1}{q}} \\ &\to 0 \end{split}$$

as $n \to \infty$. Hence, $f_n \rightharpoonup 0$.

J

For p = 1, take $g \equiv 1$ in $L^{\infty}(\mathbb{R})$. Then

$$\int_{\mathbb{R}} f_n g \, dx = n \int_0^{\frac{1}{n}} dx = 1.$$

Hence, $f_n \not\simeq 0$.

(9) Let $\{f_n\}$ be bounded in $L^p(\mu)$, $1 . Prove that if <math>f_n \to f$ a.e., then $f_n \to f$. Is this result still true when p = 1?

Solution: It suffices to show that for any $g \in L^q(\mu)$,

$$\int (f_n - f)gd\mu \to 0 \text{ as } n \to \infty.$$

By Prop 4.14 the density theorem, we may consider the case where g is a simple function with finite support. Let E be a finite measure set such that g = 0 outside E and M > 0 be bound of g. By the solution to Problem 5, $\{f_n, f\}$ is uniformly integrable, for all $\varepsilon > 0, \exists \delta > 0$, s.t. for any A measurable s.t $\mu(A) < \delta$,

$$\int_A |h| d\mu < \varepsilon, h = f_n \text{ or } f.$$

By Egorov's Theorem, there is a measurable B s.t $\mu(E\setminus B)\,<\,\delta$ and f_n

converges uniformly to f on B. Hence

$$\begin{split} \left| \int (f_n - f)gd\mu \right| &= \left| \int_E (f_n - f)gd\mu \right| \\ &= \left| \int_{E \setminus B} (f_n - f)gd\mu \right| + \left| \int_B (f_n - f)gd\mu \right| \\ &< 2M\varepsilon + \left| \int_B (f_n - f)gd\mu \right| \\ &< (2M + 1)\varepsilon, \text{ for large n }. \end{split}$$

For p=1, the result is false by Problem 8.

(10) Provide a proof of Proposition 5.3.

Solution:

(a) Let $E = \bigcup_{j=1}^{n} E_j \in \mathfrak{M}$. If λ is concentrated on A, then $\lambda(E_j) = \lambda(E_j \cap A)$, and so

$$|\lambda|(E) = \sup\{\sum |\lambda(E_j)| : E = \bigcup^{\circ} E_j, E_j \in \mathfrak{M}\}\$$
$$= \sup\{\sum |\lambda(E_j \cap A)| : E \cap A = \bigcup^{\circ} (E_j \cap A), E_j \in \mathfrak{M}\}\$$
$$= |\lambda|(E \cap A).$$

- (b) If $\lambda_1 \perp \lambda_2$, then λ_j is concentrated on some A_j (j = 1, 2) with $A_1 \cap A_2 = \emptyset$. By part (a), $|\lambda_j|$ is concentrated on A_j . Therefore, $|\lambda_1| \perp |\lambda_2|$.
- (c) Suppose μ is concentrated on A. If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1(A) = \lambda_2(A) = 0$, which implies $(\lambda_1 + \lambda_2)(A) = 0$. Hence, $\lambda_1 + \lambda_2 \perp \mu$.
- (d) Suppose $\mu(E) = 0$. If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, then $\lambda_1(E) = \lambda_2(E) = 0$, which implies $(\lambda_1 + \lambda_2)(E) = 0$. Hence, $\lambda_1 + \lambda_2 \ll \mu$.
- (e) Let $E = \bigcup E_j$ and suppose $\mu(E) = 0$. Then $E_j \subset E$ implies $\mu(E_j) = 0$. If $\lambda \ll \mu$, then $\lambda(E_j) = 0$. Therefore, $\sum |\lambda(E_j)| = 0$ and it follows that $|\lambda|(E) = 0$.

- (f) Suppose λ_2 is concentrated on A. If $\lambda_2 \perp \mu$, then $\mu(A) = 0$, which implies $\lambda_1(A) = 0$ by $\lambda_1 \ll \mu$. Hence, $\lambda_1 \perp \lambda_2$.
- (g) By part (f), $\lambda \perp \lambda$. This is impossible unless $\lambda = 0$.
- (11) Show that M(X), the space of all signed measures defined on (X, \mathfrak{M}) , forms a Banach space under the norm $\|\mu\| = |\mu|(X)$.

Solution: It is clear that the M(X) is a normed vector space if the norm is defined as in the question.

Recall the fact that a normed vector space is a Banach space if and only if every absolutely summable sequence is summable. Let $\{\mu_k\}$ be an absolutely summable sequence. Let E be a measurable set. We immediately have

$$\sum_{k=1}^{\infty} |\mu_k(E)| \le \sum_{k=1}^{\infty} |\mu_k|(E) \le \sum_{k=1}^{\infty} |\mu_k|(X) < \infty,$$

hence $\sum \mu_k(E)$ converges absolutely. $\forall E \in \mathfrak{M}$, put

$$\mu(E) = \sum_{k=1}^{\infty} \mu_k(E)$$

which exists as a real number by the above argument. We will prove the countable additivity. Let E_n be a sequence of pairwise disjoint measurable sets. Then

$$\mu\left(\bigcup E_n\right) = \sum_{k=1}^{\infty} \mu_k\left(\bigcup E_n\right)$$
$$= \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \mu_k(E_n)$$
$$= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu_k(E_n) \text{ (by absolute convergence)}$$
$$= \sum_{n=1}^{\infty} \mu(E_n).$$

We have proved that μ is a signed measure. To show that μ_n converges to μ in $\|\cdot\|$, let X_n be a partition of X.

$$\sum_{n=1}^{\infty} \left| \left(\mu - \sum_{k=1}^{m} \mu_k \right) (X_n) \right| = \left| \sum_{n=1}^{\infty} \sum_{k=m}^{\infty} \mu_k(X_n) \right|$$
$$\leq \sum_{k=m}^{\infty} \sum_{n=1}^{\infty} |\mu_k(X_n)|$$
$$\leq \sum_{k=m}^{\infty} |\mu_k| (X) = \sum_{k=m}^{\infty} ||\mu_k|| \to 0$$

so that $\left\|\sum \mu_k - \mu\right\| \to 0$ as $k \to \infty$.

(12) Let \mathcal{L}^1 be the Lebesgue measure on (0, 1) and μ the counting measure on (0, 1). Show that $\mathcal{L}^1 \ll \mu$ but there is no $h \in L^1(\mu)$ such that $d\mathcal{L}^1 = h d\mu$. Why?

Solution: If $\mu(E) = 0$, then $E = \phi$, which implies $\mathcal{L}^1(E) = 0$. Hence, $\mathcal{L}^1 \ll \mu$.

Suppose on the contrary, that $\exists h \in L^1(\mu)$ such that $d\mathcal{L}^1 = \int h d\mu$. Since $h \in L^1(\mu)$, h = 0 except on a countable set. It follows that $\mathcal{L}^1(\{h = 0\}) = 1$. However,

$$\mathcal{L}^{1}(\{h=0\}) = \int_{\{h=0\}} h \, d\mu = 0$$

This is a contradiction. Radon-Nikodym theorem does not apply here because μ is not σ -finite.

(13) Let μ be a measure and λ a signed measure on (X, \mathfrak{M}) . Show that $\lambda \ll \mu$ if and only if $\forall \varepsilon > 0$, there is some $\delta > 0$ such that $|\lambda(E)| < \varepsilon$ whenever $|\mu(E)| < \delta, \forall E \in \mathfrak{M}.$

Solution: (\Leftarrow) Suppose $\mu(E) = 0$. By the hypothesis, for all $\varepsilon > 0$, $|\lambda(E)| < \varepsilon$. This implies $\lambda(E) = 0$, hence $\lambda \ll \mu$.

 (\Rightarrow) Suppose on the contrary that $\exists \varepsilon_0 > 0$ such that $\forall n \in \mathbb{N}, \exists E \in \mathfrak{M}$ with

 $\mu(E) < 2^{-n}$ such that $\lambda(E) < \varepsilon$. Put $E = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} E_k$. Then $\mu(E) = 0$ but

$$\lambda(E) = \lim_{n \to \infty} \lambda\left(\bigcup_{k \ge n} E_k\right) \ge \varepsilon_0 > 0.$$

This contradicts the fact that $\lambda \ll \mu$.

(14) Let μ be a σ -finite measure and λ a signed measure on (X, \mathfrak{M}) satisfying $\lambda \ll \mu$. Show that

$$\int f \, d\lambda = \int f h \, d\mu, \quad \forall f \in L^1(\lambda), \ f h \in L^1(\mu)$$

where $h = \frac{d\lambda}{d\mu} \in L^1(\mu)$.

Solution

Step 1. $f = \chi_E$ for some $E \in \mathfrak{M}$.

We have

$$\int_X \chi_E \, d\lambda = \lambda(E) = \int_E h \, d\mu = \int_X \chi_E h \, d\mu.$$

Step 2. f is a simple function.

This follows directly from Step 1.

Step 3. $f \ge 0$ is measurable.

Pick $0 \leq s_n \nearrow f$. Then $0 \leq s_n h \nearrow f h$ on $\{h \geq 0\}$ and $0 \leq -s_n h \nearrow$

-fh on $\{h<0\}.$ Hence,

$$\begin{split} \int_X f \, d\lambda &= \int_{h \ge 0} f \, d\lambda - \int_{h < 0} -f \, d\lambda \\ &= \sup_{0 \le s \le f} \int_{h \ge 0} s \, d\lambda - \sup_{0 \le s \le f} \int_{h < 0} -s \, d\lambda \\ &= \sup_{0 \le s \le f} \int_{h \ge 0} sh \, d\mu - \sup_{0 \le s \le f} \int_{h < 0} -sh \, d\mu \text{ (by Step 2)} \\ &= \int_{h \ge 0} fh_+ \, d\mu - \int_{h < 0} fh_- \, d\mu \\ &= \int_X f(h_+ - h_-) \, d\mu \\ &= \int_X fh \, d\mu. \end{split}$$

Step 4. $f \in L^1(\lambda)$.

Writing $f = f_+ - f_-$, the result follows from Step 3.

(15) Let μ , λ and ν be finite measures, $\mu \gg \lambda \gg \nu$. Show that $\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda}\frac{d\lambda}{d\mu}$, μ a.e.

Solution: By (14), we have for all measurable sets E,

$$\nu(E) = \int_E \frac{d\nu}{d\lambda} d\lambda = \int_E \frac{d\nu}{d\lambda} \frac{d\lambda}{d\mu} d\mu.$$

The result follows from the uniqueness of the Radon-Nikodym derivative.