
MATH5011 Exercise 9

(1) Optional. Let M be the collection of all sets E in the unit interval [0, 1] such

that either E or its complement is at most countable. Let µ be the counting

measure on this σ-algebra M. If g(x) = x for 0 ≤ x ≤ 1, show that g is not

M-measurable, although the mapping

f 7→
∑

xf(x) =

∫
fg dµ

makes sense for every f ∈ L1(µ) and defines a bounded linear functional on

L1(µ). Thus (L1)∗ 6= L∞ in this situation.

Solution: g is not M-measurable because g−1
(

1

4
,
3

4

)
=

(
1

4
,
3

4

)
/∈ M.

The functional Λf =
∑
xf(x) is clearly linear. To see that it is bounded,

if f ∈ L1(µ), then f is non-zero on an at most countable set {xi} and by

integrability, ∑
i=1

|f(xi)| <∞.

Thus Λf is well defined as g is a bounded function. Hence the operator is

bounded.

(2) Optional. Let L∞ = L∞(m), where m is Lebesgue measure on I = [0, 1].

Show that there is a bounded linear functional Λ 6= 0 on L∞ that is 0 on

C(I), and therefore there is no g ∈ L1(m) that satisfies Λf =

∫
I

fg dm for

every f ∈ L∞. Thus (L∞)∗ 6= L1.

Solution: Method 1. For any x ∈ I take Λxf = g(x+)− g(x−) for all f such

that f = g a.e. for some function g such that the two one-sided limits g(x+)

and g(x−) both exist. Then ‖Λx − Λy‖ ≥ 1 for x 6= y. With reference to the

question, we can just take x = 1/2.

Method 2. Consider χ[0, 1
2
] ∈ L∞ \ C(I), as C(I) is closed subspace in L∞,
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by consequence of Hahn-Banach Theorem (thm 3.11 in p.38 of lecture notes

on functional analysis.), there is non-zero bounded linear functional Λ on L∞

which is zero on C(I).

If there is g ∈ L1(m) that satisfies Λf =

∫
I

fg dm for every f ∈ L∞,

Λf =

∫
I

fg dm = 0,∀f ∈ C(I)⇒ g = 0.

we have Λ = 0 which is impossible.

(3) Prove Brezis-Lieb lemma for 0 < p ≤ 1.

Hint: Use |a+ b|p ≤ |a|p + |b|p in this range.

Solution: Taking gn = fn − f as a and f as b,

∣∣ |f + gn|p − |gn|p
∣∣ ≤ |f |p ,

or,

− |f |p ≤ |f + gn|p − |gn|p ≤ |f |p .

we have

−2 |f |p ≤ |f + gn|p − |gn|p − |f |p ≤ 0

which implies ∣∣ |f + gn|p − |gn|p − |f |p
∣∣ ≤ 2 |f |p ,

and result follows from Lebesgue dominated convergence theorem.

(4) Let fn, f ∈ Lp(µ), 0 < p < ∞, fn → f a.e., ‖fn‖p → ‖f‖p. Show that

‖fn − f‖p → 0.
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Solution: Using the Brezis-Lieb lemma for 0 < p <∞, we have

‖fn − f‖pp =

∫
X

|fn − f |p dµ

≤
∫
X

(|fn − f |p − (|fn|p − |f |p)) dµ+

∫
X

(|fn|p − |f |p) dµ

≤
∫
X

||fn − f |p − (|fn|p − |f |p)| dµ+
(
‖fn‖pp − ‖f‖

p
p

)
→ 0

as n→∞.

(5) Suppose µ is a positive measure on X, µ(X) < ∞, fn ∈ L1(µ) for n =

1, 2, 3, . . . , fn(x) → f(x) a.e., and there exists p > 1 and C < ∞ such that∫
X

|fn|p dµ < C for all n. Prove that

lim
n→∞

∫
X

|f − fn| dµ = 0.

Hint: {fn} is uniformly integrable.

Solution: By Vitali’s convergence Theorem, it suffices to prove that {fn} is

uniformly integrable. Let q be conjugate to p. By Hölder inequality,

∫
E

|fn|dµ ≤ ‖fn‖p{µ(E)}
1
q

≤ C
1
p{µ(E)}

1
q ,

for any measurable E. Now the result follows easily.

(6) We have the following version of Vitali’s convergence theorem. Let {fn} ⊂

Lp(µ), 1 ≤ p <∞. Then fn → f in Lp-norm if and only if

(i) {fn} converges to f in measure,

(ii) {|fn|p} is uniformly integrable, and
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(iii) ∀ε > 0, ∃ measurable E, µ(E) <∞, such that

∫
X\E
|fn|p dµ < ε, ∀n.

I found this statement from PlanetMath. Prove or disprove it.

Solution: Let ε > 0. By (iii), there exists a set E of finite measure (WLOG

assume positive measure) such that

∫
Ẽ

|fn|p < ε.

Since {fn} converges to f in measure, there is a subsequence {fnk
} which

converges to f pointwisely a.e.. By Fatou’s Lemma,

∫
Ẽ

|f |p < ε.

By (ii), there exists δ > 0 such that whenever µ(A) < δ,

∫
A

|fn|p < ε
1
p ;

WLOG, by choosing a smaller δ, we may assume further whenever µ(A) < δ

∫
A

|f |p < ε
1
p

because there is a subsequence {fnk
} which converges to f pointwisely a.e.

and we can apply Fatou’s Lemma, By (i), there exists N ∈ N such that for

all n ≥ N

µ{x ∈ E :
∣∣∣(fn − f)(x)

∣∣∣p ≥ ε

µ(E)
|} < δ.

Now, for n ≥ N, define An = {x ∈ E : |(fn−f)(x)|p ≥ ε
µ(E)
} and Bn = E\An,
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and we have ∫
|fn − f |p =

∫
Ẽ

|fn − f |p +

∫
E

|fn − f |p

< 2pε+

∫
An

|fn − f |p +

∫
Bn

|fn − f |p

< 2pε+

(∫
An

|fn|p +

∫
An

|f |p
)p

+ ε

< 2pε+ 2pε+ ε = (2p+1 + 1)ε.

This completes the proof.

(7) Let {xn} be bounded in some normed space X. Suppose for Y dense in X ′,

Λxn → Λx, ∀Λ ∈ Y for some x. Deduce that xn ⇀ x.

Solution: Since {xn} is bounded, there exists M > 0 such that ‖xn‖ ≤ M .

Write M1 = max{M, ‖x‖}.

Given ε > 0 and Λ ∈ X ′, choose Λ1 ∈ Y such that ‖Λ− Λ1‖ <
ε

3M1

and

choose N large such that |Λxn − Λx| < ε

3
. Then

|Λxn − Λx| = |Λxn − Λ1xn|+ |Λ1xn − Λ1x|+ |Λ1x− Λx|

≤ ε

3M1

M +
ε

3
+

ε

3M1

‖x‖

< ε.

(8) Consider fn(x) = n1/pχ(nx) in Lp(R). Then fn ⇀ 0 for p > 1 but not for

p = 1. Here χ = χ[0,1].

Solution: For 1 < p <∞, let q be the conjugate exponent and let g ∈ Lq(R).
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By Hölder’s inequality and Lebesgue’s dominated convergence theorem,

∫
R
fng dx =

∫ 1
n

0

n1/pg(x) dx

≤

(∫ 1
n

0

(n1/p)p dx

) 1
p
(∫ 1

n

0

|g(x)|q dx

) 1
q

≤
(∫

R
χ[0, 1

n
]|g(x)|q dx

) 1
q

→ 0

as n→∞. Hence, fn ⇀ 0.

For p = 1, take g ≡ 1 in L∞(R). Then

∫
R
fng dx = n

∫ 1
n

0

dx = 1.

Hence, fn 6⇀ 0.

(9) Let {fn} be bounded in Lp(µ), 1 < p < ∞. Prove that if fn → f a.e., then

fn ⇀ f . Is this result still true when p = 1?

Solution: It suffices to show that for any g ∈ Lq(µ),

∫
(fn − f)gdµ→ 0 as n→∞.

By Prop 4.14 the density theorem, we may consider the case where g is a

simple function with finite support. Let E be a finite measure set such that

g = 0 outside E and M > 0 be bound of g. By the solution to Problem 5,

{fn, f} is uniformly integrable, for all ε > 0, ∃δ > 0, s.t. for any A measurable

s.t µ(A) < δ, ∫
A

|h|dµ < ε, h = fn or f.

By Egorov’s Theorem, there is a measurable B s.t µ(E \ B) < δ and fn
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converges uniformly to f on B. Hence

∣∣∣ ∫ (fn − f)gdµ
∣∣∣ =

∣∣∣ ∫
E

(fn − f)gdµ
∣∣∣

=
∣∣∣ ∫

E\B
(fn − f)gdµ

∣∣∣+
∣∣∣ ∫

B

(fn − f)gdµ
∣∣∣

< 2Mε+
∣∣∣ ∫

B

(fn − f)gdµ
∣∣∣

< (2M + 1)ε, for large n .

For p=1, the result is false by Problem 8.

(10) Provide a proof of Proposition 5.3.

Solution:

(a) Let E =
◦⋃
Ej ∈M. If λ is concentrated on A, then λ(Ej) = λ(Ej ∩A),

and so

|λ| (E) = sup{
∑
|λ(Ej)| : E =

◦⋃
Ej, Ej ∈M}

= sup{
∑
|λ(Ej ∩ A)| : E ∩ A =

◦⋃
(Ej ∩ A), Ej ∈M}

= |λ| (E ∩ A).

(b) If λ1 ⊥ λ2, then λj is concentrated on some Aj (j = 1, 2) with A1∩A2 =

∅. By part (a), |λj| is concentrated on Aj. Therefore, |λ1| ⊥ |λ2|.

(c) Suppose µ is concentrated on A. If λ1 ⊥ µ and λ2 ⊥ µ, then λ1(A) =

λ2(A) = 0, which implies (λ1 + λ2)(A) = 0. Hence, λ1 + λ2 ⊥ µ.

(d) Suppose µ(E) = 0. If λ1 � µ and λ2 � µ, then λ1(E) = λ2(E) = 0,

which implies (λ1 + λ2)(E) = 0. Hence, λ1 + λ2 � µ.

(e) Let E =
◦⋃
Ej and suppose µ(E) = 0. Then Ej ⊂ E implies µ(Ej) = 0.

If λ� µ, then λ(Ej) = 0. Therefore,
∑
|λ(Ej)| = 0 and it follows that

|λ| (E) = 0.
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(f) Suppose λ2 is concentrated on A. If λ2 ⊥ µ, then µ(A) = 0, which

implies λ1(A) = 0 by λ1 � µ. Hence, λ1 ⊥ λ2.

(g) By part (f), λ ⊥ λ. This is impossible unless λ = 0.

(11) Show that M(X), the space of all signed measures defined on (X,M), forms

a Banach space under the norm ‖µ‖ = |µ|(X).

Solution: It is clear that the M(X) is a normed vector space if the norm is

defined as in the question.

Recall the fact that a normed vector space is a Banach space if and only if

every absolutely summable sequence is summable. Let {µk} be an absolutely

summable sequence. Let E be a measurable set. We immediately have

∞∑
k=1

|µk(E)| ≤
∞∑
k=1

|µk|(E) ≤
∞∑
k=1

|µk|(X) <∞,

hence
∑

µk(E) converges absolutely. ∀E ∈M, put

µ(E) =
∞∑
k=1

µk(E)

which exists as a real number by the above argument. We will prove the

countable additivity. Let En be a sequence of pairwise disjoint measurable

sets. Then

µ
(⋃

En

)
=
∞∑
k=1

µk

(⋃
En

)
=
∞∑
k=1

∞∑
n=1

µk(En)

=
∞∑
n=1

∞∑
k=1

µk(En) (by absolute convergence)

=
∞∑
n=1

µ(En).
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We have proved that µ is a signed measure. To show that µn converges to µ

in ‖ · ‖, let Xn be a partition of X.

∞∑
n=1

∣∣∣∣∣
(
µ−

m∑
k=1

µk

)
(Xn)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

∞∑
k=m

µk(Xn)

∣∣∣∣∣
≤

∞∑
k=m

∞∑
n=1

|µk(Xn)|

≤
∞∑
k=m

|µk|(X) =
∞∑
k=m

‖µk‖ → 0

so that
∥∥∥∑µk − µ

∥∥∥ → 0 as k →∞.

(12) Let L1 be the Lebesgue measure on (0, 1) and µ the counting measure on

(0, 1). Show that L1 � µ but there is no h ∈ L1(µ) such that dL1 = h dµ.

Why?

Solution: If µ(E) = 0, then E = φ, which implies L1(E) = 0. Hence,

L1 � µ.

Suppose on the contrary, that ∃h ∈ L1(µ) such that dL1 =

∫
h dµ. Since

h ∈ L1(µ), h = 0 except on a countable set. It follows that L1({h = 0}) = 1.

However,

L1({h = 0}) =

∫
{h=0}

h dµ = 0.

This is a contradiction. Radon-Nikodym theorem does not apply here because

µ is not σ-finite.

(13) Let µ be a measure and λ a signed measure on (X,M). Show that λ � µ

if and only if ∀ε > 0, there is some δ > 0 such that |λ(E)| < ε whenever

|µ(E)| < δ, ∀E ∈M.

Solution: (⇐) Suppose µ(E) = 0. By the hypothesis, for all ε > 0, |λ(E)| <

ε. This implies λ(E) = 0, hence λ� µ.

(⇒) Suppose on the contrary that ∃ε0 > 0 such that ∀n ∈ N, ∃E ∈M with
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µ(E) < 2−n such that λ(E) < ε. Put E =
⋂
n∈N

⋃
k≥n

Ek. Then µ(E) = 0 but

λ(E) = lim
n→∞

λ

(⋃
k≥n

Ek

)
≥ ε0 > 0.

This contradicts the fact that λ� µ.

(14) Let µ be a σ-finite measure and λ a signed measure on (X,M) satisfying

λ� µ. Show that

∫
f dλ =

∫
fh dµ, ∀f ∈ L1(λ), fh ∈ L1(µ)

where h =
dλ

dµ
∈ L1(µ).

Solution

Step 1. f = χE for some E ∈M.

We have ∫
X

χE dλ = λ(E) =

∫
E

h dµ =

∫
X

χEh dµ.

Step 2. f is a simple function.

This follows directly from Step 1.

Step 3. f ≥ 0 is measurable.

Pick 0 ≤ sn ↗ f . Then 0 ≤ snh↗ fh on {h ≥ 0} and 0 ≤ −snh↗
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−fh on {h < 0}. Hence,∫
X

f dλ =

∫
h≥0

f dλ−
∫
h<0

−f dλ

= sup
0≤s≤f

∫
h≥0

s dλ− sup
0≤s≤f

∫
h<0

−s dλ

= sup
0≤s≤f

∫
h≥0

sh dµ− sup
0≤s≤f

∫
h<0

−sh dµ (by Step 2)

=

∫
h≥0

fh+ dµ−
∫
h<0

fh− dµ

=

∫
X

f(h+ − h−) dµ

=

∫
X

fh dµ.

Step 4. f ∈ L1(λ).

Writing f = f+ − f−, the result follows from Step 3.

(15) Let µ, λ and ν be finite measures, µ � λ � ν. Show that
dν

dµ
=
dν

dλ

dλ

dµ
, µ

a.e.

Solution: By (14), we have for all measurable sets E,

ν(E) =

∫
E

dν

dλ
dλ =

∫
E

dν

dλ

dλ

dµ
dµ.

The result follows from the uniqueness of the Radon-Nikodym derivative.
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