MATH5011 Real Analysis I

Exercise 8 Suggested Solution

Standard notations are in force. Those with *,taken from $[R]$, are optional.
(1) Let $f, g \in L^{p}(\mu), 1<p<\infty$. Show that the function

$$
\Phi(t)=\int_{X}|f+t g|^{p} d \mu
$$

is differentiable at $t=0$ and

$$
\Phi^{\prime}(0)=p \int_{X}|f|^{p-2} f g d \mu .
$$

Hint: Use the convexity of $t \mapsto|f+t g|^{p}$ to get

$$
|f+t g|^{p}-|f|^{p} \leq t\left(|f+g|^{p}-|f|^{p}\right), \quad t>0
$$

and a similar estimate for $t<0$.
Solution: Recall that for any convex function φ defined on $[0,1]$, one has the elementary inequality

$$
\frac{\varphi(t)-\varphi(0)}{t-0} \leq \frac{\varphi(1)-\varphi(0)}{1-0}, \quad \forall t \in(0,1),
$$

which could be deduced from the definition of convexity. For $p>1, x \in X$, the function $\varphi(t)=|f(x)+t g(x)|^{p}$ is convex, differentiable and

$$
\lim _{t \rightarrow 0} \frac{|f(x)+t g(x)|^{p}-|f|^{p}(x)}{t}=p|f|^{p-2}(x)(f(x) g(x)),
$$

whenever $f(x)$ and $g(x)$ are finite. Applying the inequality above to this
particular convex function, We have

$$
\frac{1}{t}\left\{|f+t g|^{p}-|f|^{p}\right\} \leq|f+g|^{p}-|f|^{p}, \forall t \in(0,1)
$$

By replacing t with $-t$, we obtain a similar inequality

$$
|f|^{p}-|f-g|^{p} \leq \frac{1}{t}\left\{|f+t g|^{p}-|f|^{p}\right\}, \forall t \in(-1,0)
$$

Now the desired result follows from an application of Lebesgue's dominated convergence theorem.
(2) Suppose f is a measurable function on X, μ is a positive measure on X, and

$$
\varphi(p)=\int_{X}|f|^{p} d \mu=\|f\|_{p}^{p} \quad(0<p<\infty)
$$

Let $E=\{p: \varphi(p)<\infty\}$. Assume $\|f\|_{\infty}>0$.
(a) If $r<p<s, r \in E$, and $s \in E$, prove that $p \in E$.
(b) Prove that $\log \varphi$ is convex in the interior of E and that φ is continuous on E.
(c) By (a), E is connected. Is E necessarily open? Closed? Can E consist of a single point? Can E be any connected subset of $(0, \infty)$?
(d) If $r<p<s$, prove that $\|f\|_{p} \leq \max \left(\|f\|_{r},\|f\|_{s}\right)$. Show that this implies the inclusion $L^{r}(\mu) \cap L^{s}(\mu) \subset L^{p}(\mu)$.
(e) Assume that $\|f\|_{r}<\infty$ for some $r<\infty$ and prove that

$$
\|f\|_{p} \rightarrow\|f\|_{\infty} \quad \text { as } p \rightarrow \infty
$$

Solution:

(a) Write $p=\lambda r+(1-\lambda) s$ for $0<\lambda<1$. By Hölder's inequality,

$$
\int_{X}|f|^{p} d \mu=\int_{X}|f|^{\lambda r}|f|(1-\lambda) s d \mu \leq\left(\int_{X}|f|^{r} d \mu\right)^{\lambda}\left(\int_{X}|f|^{s} d \mu\right)^{1-\lambda}
$$

which shows that φ is finite on $[r, z]$.
(b) Rewrite the inequality above as

$$
\varphi(\lambda r+(1-\lambda) s) \leq \varphi(r)^{\lambda} \cdot \varphi(s)^{1-\lambda}, \quad(0<\lambda<1)
$$

It is also true for $\lambda=0,1$. Hence for all $\lambda \in[0,1]$,

$$
\log \varphi(\lambda r+(1-\lambda) s) \leq \lambda \log \varphi(r)+(1-\lambda) \log \varphi(s)
$$

since \log is increasing. Thus $\log \varphi(p)$ is convex on $[r, s]$. Hence $\varphi(x)$ is continuous in the interior of E. It follows form monotonicity applying to $\chi_{|f|>1} f$ and $\chi_{|f| \leq 1} f$ that $\varphi(x)$ is also continuous on ∂E.
(c) Let $X=(0, \infty)$ with the Lebesgue measure. E can be any connected subset of $(0, \infty)$. The basic functions to consider are of the form x^{k} and $x^{k}|\log x|^{m}$ near $x=0$ and $x=\infty$. Define

$$
\begin{array}{r}
g_{k}(x)=x^{k} \chi_{(0,1 / 2]}(x), \\
h_{k}(x)=x^{k} \chi_{(2, \infty)}(x), \\
g_{k, m}(x)=x^{k}|\log x|^{m} \chi_{(0,1 / 2]}(x), \\
h_{k, m}(x)=x^{k}|\log x|^{m} \chi_{(2, \infty)}(x),
\end{array}
$$

It is easy to see that $\int_{X} g_{k} d x<\infty$ iff $k>-1$ and $\int_{X} h_{k} d x<\infty$ iff $k<-1$. Since $|\log x| \leq C_{\epsilon} e^{-\epsilon}$ for $0 \leq x \leq 1$ and all $\epsilon>0, \int_{X} g_{k, m} d x$ is finite for $k>-1$ and infinite for $k>-1$. For $k=-1$, direct
computations by substituting $u=\log x$ yield

$$
\int_{X} g_{k, m} d x=\int_{0}^{1 / 2} x^{-1}|\log x|^{m} d x=\int_{\log 2}^{\infty} u^{m} d u
$$

which is finite iff $m<-1$. Similarly, one can show $\int_{X} h_{k, m} d x$ is finite for $k>-1$ and infinite for $k>-1$. If $k=-1$, the integral is finite if and only if $m<-1$. Note that $g_{k}^{p}=g_{p k}, g_{k, m}^{p}=g_{p k, p m}$ and similarly for h.

Now for $f=g_{-1,-2}+h_{-1,-2}$, one has $E=1$. For $E=\emptyset$, take $f=$ $g_{-1}+h_{-1}$. To get $E=(0, \infty)$, one may take $f=e^{-|x|}$. For $E=[1, p)$, take $f=g_{-1 / p}+h_{-1,-2}$. Similarly it is easy to see that E can be any connected subset of $(0, \infty)$ for choosing f properly.
(d) The inequality in (a) implies $\|f\|_{p} \leq \max \left(\|f\|_{r},\|f\|_{s}\right)$. Obviously, if $\|f\|_{r}<\infty$ and $\|f\|_{s}<\infty$, then $\|f\|_{p}<\infty$. Thus $L^{r}(\mu) \cap L^{s}(\mu) \subset L^{p}(\mu)$.
(e) Denote $E_{a}:=\{x: a \leq|f(x)|\}$ for every $0<a<\|f\|_{\infty}$, then $0<$ $\mu\left(E_{a}\right)<\infty .\left(\|f\|_{r}<\infty\right.$ implies $\mu\left(E_{a}\right)<\infty$.) Thus

$$
\|f\|_{p}=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p} \geq\left(\int_{E_{a}}|f|^{p} d \mu\right)^{1 / p} \geq a\left(\mu\left(E_{a}\right)\right)^{1 / p}
$$

which implies $\underset{p \rightarrow \infty}{\underline{\lim }}\|f\|_{p} \geq a$. Since a is arbitrary, we have $\underset{p \rightarrow \infty}{\lim }\|f\|_{p} \geq$ $\|f\|_{\infty}$.

On the other hand, for $p>r$,

$$
\|f\|_{p}=\left(\int_{X}|f|^{p-r}|f| r d \mu\right)^{1 / p} \leq\|f\|_{r}^{r / p}\|f\|_{\infty}^{1-r / p}
$$

which implies $\varlimsup_{p \rightarrow \infty}\|f\|_{p} \leq\|f\|_{\infty}$. In conclusion, we have

$$
\lim _{p \rightarrow \infty}\|f\|_{\infty}=\|f\|_{\infty}
$$

(3) Assume, in addition to the hypothesis of the last problem, that

$$
\mu(X)=1
$$

(a) Prove that $\|f\|_{r} \leq\|f\|_{s}$ if $0<r<s \leq \infty$.
(b) Under what conditions does it happen that $0<r<s \leq \infty$ and $\|f\|_{r}=$ $\|f\|_{s}<\infty$?
(c) Prove that $L^{r}(\mu) \supset L^{s}(\mu)$ if $0<r<s$. Under what conditions do these two spaces contain the same functions?
(d) Assume that $\|f\|_{r}<\infty$ for some $r>0$, and prove that

$$
\lim _{p \rightarrow 0}\|f\|_{p}=\exp \left\{\int_{X} \log |f| d \mu\right\}
$$

if $\exp \{-\infty\}$ is defined to be 0 .

Solution:

(a) If $s<\infty$, the conclusion from from Hölder's inequality,

$$
\int_{X}|f|^{r} d \mu \leq\left(\int_{X}|f|^{s} d \mu\right)^{r / s}\left(\int_{X} 1 d \mu\right)^{1-r / s}=\|f\|_{s}^{r}
$$

If $s=\infty$, the desired result follows from

$$
\|f\|_{r} \leq\|f\|_{\infty}\left(\int_{X} 1 d \mu\right)^{1 / r}=\|f\|_{\infty}
$$

(b) From the equality sign characterization in the Hölder inequality it is easy to see that $\|f\|_{r}=\|f\|_{s}<\infty$ if and only if $|f|=\|f\|_{\infty}<\infty$ a.e..
(c) We claim that under the condition $\mu(X)<\infty, L^{r}(\mu)=L^{s}(\mu)$ for $0<$ $r<s \leq \infty$ if and only if the following property (call it L) holds:

There exists $\varepsilon_{0}>0$ such that for any measurable set $E \subset X$ with $\mu(E)>0$ we have $\mu(E)>\varepsilon_{0}$.

In fact, if Property L holds, let $f \in L^{r}(\mu)$ and denote $E_{n}:=\{x$: $|f| \geq n\}$. Then there exists $n_{0} \in \mathbb{N}$ such that $\mu\left(E_{n_{0}}\right)=0$ and thus $f \in L^{\infty}(\mu)$. Otherwise for all $n, \mu\left(E_{n}\right)>0$. Thus $\mu(\{x:|f(x)|=$ $\infty\}) \geq \lim _{n \rightarrow \infty} \mu\left(E_{n}\right) \geq \varepsilon_{0}$ and then $\|f\|_{r}=\infty$, a contradiction.
Conversely, suppose there is a sequence of measurable sets $\left\{E_{n}\right\}$ with $0<\mu\left(E_{n}\right)<3^{-n}$. Without loss of generality, E_{n} are mutually disjoint. Denote $a_{n}:=\mu\left(E_{n}\right)$ and define

$$
f= \begin{cases}\sum_{n=1}^{\infty} a_{n}^{-1 / s} \chi_{E_{n}}, & \text { if } s<\infty \\ \sum_{n=1}^{\infty} a_{n}^{-\frac{1}{2 r}} \chi_{E_{n}}, & \text { if } s=\infty\end{cases}
$$

Then $f \in L^{r}$ but $f \notin L^{s}$. The proof is completed.
(d) Note $x-1-\log x \geq 0$ on $[0, \infty)$ implies that

$$
\int_{\{|f|>1\}} \log |f| d \mu<\infty
$$

If $\mu(\{|f|=0\})>0$, it suffices to proves the equality by showing $\lim _{p \rightarrow 0}\|f\|_{p}=0$. There is a small $s>1$, with s^{\prime} be its conjugate s.t.

$$
\begin{aligned}
\|f\|_{p} & =\left\{\int_{X}|f|^{p} \chi_{\{|f|>0\}} d \mu\right\}^{\frac{1}{p}} \\
& \leq(\mu\{|f|>0\})^{\frac{1}{s^{p}}}\|f\|_{s p} \text { by Hölder inequality } \\
& \leq(\mu\{|f|>0\})^{\frac{1}{s^{p}}}\|f\|_{r} \rightarrow 0 \text { as } p \rightarrow 0
\end{aligned}
$$

We may suppose $\infty>|f|>0$ a.e. By Jensen's inequality, we have

$$
\log \|f\|_{p}=\frac{1}{p} \log \int_{X}|f|^{p} d \mu \geq \frac{1}{p} \int_{X} \log |f|^{p} d \mu=\int_{X} \log |f| d \mu
$$

On the other hand, $x-1-\log x \geq 0$ on $[0, \infty)$ implies $\frac{\|f\|_{p}^{p}-1}{p} \geq$ $\log \|f\|_{p}$. Thus

$$
\int_{X} \log |f| d \mu \leq \log \|f\|_{p} \leq \int_{X} \frac{|f|^{p}-1}{p} d \mu
$$

since $\mu(X)=1$. Note that by convexity of the map $p \mapsto|f|^{p}$ we have $\frac{|f|^{p}-1}{p}$ is increasing in p, which implies $\frac{|f|^{p}-1}{p} \leq \frac{|f|^{r}-1}{r} \in L^{1}(\mu)$ and $\lim _{p \rightarrow 0} \frac{|f|^{p}-1}{p}=\log |f|$. By Lebesgue's dominated convergence theorem for $|f|>1$ and monotone convergence theorem for $|f|<1$, we have

$$
\lim _{p \rightarrow 0} \int_{X} \frac{|f|^{p}-1}{p} d \mu=\lim _{p \rightarrow 0} \int_{\{|f| \geq 1\}} \frac{|f|^{p}-1}{p} d \mu+\lim _{p \rightarrow 0} \int_{\{|f|<1\}} \frac{|f|^{p}-1}{p} d \mu=\int_{X} \log |f| d \mu
$$

Thus by sandwich rule

$$
\lim _{p \rightarrow 0}\|f\|_{p}=\exp \left\{\int_{X} \log |f| d \mu\right\}
$$

(4) For some measures, the relation $r<s$ implies $L^{r}(\mu) \subset L^{s}(\mu)$; for others, the inclusion is reversed; and there are some for which $L^{r}(\mu)$ does not contain $L^{s}(\mu)$ is $r \neq s$. Give examples of these situations, and find conditions on μ under which these situations will occur.

Solution:

First, we give examples of these situations:
(a) For $X=[0,1]$ with usual Lebesgue measure, we have $L^{r}(\mu) \supset L^{s}(\mu)$ if $r<s$.
(b) For $X=\mathbb{N}$ with counting measure, we have $L^{r}(\mu) \subset L^{s}(\mu)$ if $r<s$.
(c) For $X=\mathbb{R}$ with usual Lebesgue measure, we have $L^{r}(\mu) \neq L^{s}(\mu)$ if $r \neq s$.

Second, we give simple conditions on μ under which these situations occur correspondingly:
(a) $\mu(X)<\infty$.
(b) Property L in 6(c) holds.
(c) $\mu(X)=\infty$ and Property L in 6(c) fails to hold.
(5) * Suppose $\mu(\Omega)=1$, and suppose f and g are positive measurable functions on Ω such that $f g \geq 1$. Prove that

$$
\int_{\Omega} f d \mu \cdot \int_{\Omega} g d \mu \geq 1
$$

Solution: Since $f g \geq 1$, we have $\sqrt{f g} \geq 1$ and so by Hölder's inequality,

$$
1 \leq \int_{\Omega} \sqrt{f} \sqrt{g} d \mu \leq\left(\int_{\Omega} f d \mu\right)^{1 / 2}\left(\int_{\Omega} g d \mu\right)^{1 / 2}=\left(\int_{\Omega} f d \mu \cdot \int_{\Omega} g d \mu\right)^{1 / 2}
$$

(6) * Suppose $\mu(\Omega)=1$ and $h: \Omega \rightarrow[0, \infty]$ is measurable. If

$$
A=\int_{\Omega} h d \mu
$$

prove that

$$
\sqrt{1+A^{2}} \leq \int_{\Omega} \sqrt{1+h^{2}} d \mu \leq 1+A
$$

If μ is Lebesgue measure on $[0,1]$ and if h is continuous, $h=f^{\prime}$, the above inequalities have a simple geometric interpretation. From this, conjecture (for general Ω) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.

Solution: The function $\phi(x)=\sqrt{1+x^{2}}$ is convex since its second derivative is always positive. Hence the first inequality follows from Jensen's inequality. The second equality follows from $|\Omega|=1$ and $\sqrt{1+x^{2}} \leq 1+x$ for all $x \geq 0$.

In the case that $\Omega=[0,1]$ with μ the Lebesgue measure and $h=f^{\prime}$ is continuous, then $\int_{0}^{1} \sqrt{1+\left(f^{\prime}\right)^{2}} d x$ is the arc length of the graph of f. Then $A=f(1)-f(0)$. The first inequality means that the straight line is the shortest path while the second inequality means the longest path is the segment from $(0, f(0))$ to $(1, f(0))$ and then going up until $(1, f(1))$.

The intuition from this suggests that the second inequality is equality if and only if $h=0$, a.e., and the first inequality is equality if and only if $h=A$, a.e. The first claim is clear since $\sqrt{1+x^{2}}=1+x$ iff $x=0$.If $h=A$, a.e, then trivially the first inequality holds. Conversely if the first inequality holds, it follows from an examination of the proof of Jensen's inequality that $\phi(A)=\phi(h(x))$, a.e., so $h=A$, a.e. since ϕ is injective on $[0, \infty)$.
(7) * Suppose $1<p<\infty, f \in L^{p}=L^{p}((0, \infty))$, relative to Lebesgue measure, and

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t \quad(0<x<\infty)
$$

(a) Prove Hardy's inequality

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

which shows that the mapping $f \rightarrow F$ carries L^{p} into L^{p}.
(b) Prove that equality holds only if $f=0$ a.e.
(c) Prove that the constant $\frac{p}{p-1}$ cannot be replaced by a smaller one.
(d) If $f>0$ and $f \in L^{1}$, prove that $F \notin L^{1}$.

Suggestions: (a) Assume first that $f \geq 0$ and $f \in C_{c}((0, \infty))$. Integration by parts gives

$$
\int_{0}^{\infty} F^{p}(x) d x=-p \int_{0}^{\infty} F^{p-1}(x) x F^{\prime}(x) d x .
$$

Note that $x F^{\prime}=f-F$, and apply Hölder's inequality to $\int F^{p-1} f$. Then derive the general case.
(c) Take $f(x)=x^{-1 / p}$ on $[1, A], f(x)=0$ elsewhere, for large A. See also Exercise 14, Chap. 8 in [R].

Solution: In fact we can show the inequality

$$
\int_{0}^{\infty}|F|^{p} d x \leq \frac{p}{p-1} \int_{0}^{\infty}|f||F|^{p-1} d x .
$$

(a) $\vdash\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}, f \in \mathcal{L}^{p}(0, \infty), p \in(1, \infty)$

Let $f \in C_{c}(0, \infty), f \geq 0$, first

$$
\begin{aligned}
\int_{0}^{\infty} F^{p}(x) d x & =\left.x F^{p}(x)\right|_{0} ^{\infty}-p \int_{0}^{\infty} F^{p-1} F^{\prime} x d x \\
& =0-p \int_{0}^{\infty} F^{p-1}(f-F) d x
\end{aligned}
$$

so

$$
\begin{equation*}
\int_{0}^{\infty} F^{p}(x) d x=\frac{p}{p-1} \int_{0}^{\infty} F^{p-1} f d x \tag{1}
\end{equation*}
$$

By Hölder's inequality,

$$
\int_{0}^{\infty} F^{p}(x) d x \leq \frac{p}{p-1}\left\{\int_{0}^{\infty} F^{p}(x) d x\right\}^{\frac{1}{q}}\|f\|_{p}
$$

and (a) holds.
Now, for $f \in C_{c}(0, \infty)$, use

$$
|F| \leq \frac{1}{x} \int_{0}^{x}|f|
$$

to get the same inequality.
Finally, for $f \in L^{p}(0, \infty)$, let $f_{n} \in C_{c}(0, \infty), f_{n} \rightarrow f$ in L^{p}. Use an approximation argument to show $\left\{F_{n}\right\}$ is Cauchy and tends to F in \mathcal{L}^{p} norm.
(b) $\vdash "="$ hold iff $f=0$ a.e.

Let f satisfy

$$
\|F\|_{p}=\frac{p}{p-1}\|f\|_{p}
$$

If f changes sign,

$$
\begin{gathered}
\widetilde{F}(x)=\frac{1}{x} \int_{0}^{x}|f| d t \\
\|\widetilde{F}\|_{p}>\|F\|_{p}=\frac{p}{p-1}=\||f|\|_{p}
\end{gathered}
$$

Impossible. Therefore $f \geq 0$ say. By an approximation argument one can show that (1) holds for $f \geq 0, f \in L^{p}$. Following the proof in (a) one see by the equality condition in Hölder's inequality that $f^{p}=$ const $\left(F^{p-1}\right)^{q}$, which implies there exists some positive constant c such that $F(x)=c f(x)$ a.e. Express this as an ODE for F and and solve it to get $f \equiv 0$ if $f \in L^{p}(0, \infty)$.
(c) Define

$$
f(x)= \begin{cases}x^{-1 / p}, & \text { if } x \in[1, A] \\ 0, & \text { otherwise }\end{cases}
$$

Then $\|f\|_{p}=(\log A)^{1 / p}$ and

$$
F(x)= \begin{cases}0, & \text { if } x \in(0,1) \\ \frac{p}{p-1}\left(x^{-\frac{1}{p}}-x^{-1}\right), & \text { if } x \in[1, A] \\ \frac{p}{p-1}\left(A^{1-\frac{1}{p}}-1\right) x^{-1}, & \text { if } x \in(A, \infty)\end{cases}
$$

Then $\|F\|_{p}^{p}=I_{1}+I_{2}$, where

$$
\begin{aligned}
I_{1} & =\int_{1}^{A}\left(\frac{p}{p-1}\left(x^{-\frac{1}{p}}-x^{-1}\right)\right)^{p} d x \\
& =\left(\frac{p}{p-1}\right)^{p} \int_{1}^{A}\left(x^{-\frac{1}{p}}-x^{-1}\right)^{p} d x \\
I_{2} & =\int_{A}^{\infty}\left(\frac{p}{p-1}\left(A^{1-\frac{1}{p}}-1\right) x^{-1}\right)^{p} d x \\
& =\frac{p^{p}}{(p-1)^{p+1}}\left(1-A^{\frac{1}{p}-1}\right)^{p} d x
\end{aligned}
$$

Suppose on the contrary that the constant $\frac{p}{p-1}$ can be replaced by $\frac{\gamma p}{p-1}$ for some $\gamma \in(0,1)$. Then there exists $\delta \in(\gamma, 1)$. Note that there exists $A_{0}>1$ such that for $x>A_{0}, x^{-\frac{1}{p}}-x^{-1}>\delta x^{-\frac{1}{p}}$. Then for sufficiently large $A>A_{0}$,

$$
\begin{aligned}
I_{1} & >\frac{\delta p}{p-1} \int_{A_{0}}^{A} x^{-1} d x \\
& =\frac{\delta p}{p-1}\left(\log A-\log A_{0}\right) \\
& >\frac{\gamma p}{p-1} \log A \\
& =\frac{\gamma p}{p-1}\|f\|_{p}^{p}
\end{aligned}
$$

This implies $\|F\|_{p}>\frac{\gamma p}{p-1}\|p\|_{f}$ if A is sufficiently large. Contradiction arises.
(d) Since $f>0$ on $(0, \infty)$, there exists $x_{0}>0$ such that $c_{0}:=\int_{0}^{x_{0}} f(t) d t$. Then

$$
\int_{x_{0}}^{\infty} F(x) d x=\int_{x_{0}}^{\infty} \frac{1}{x} \int_{0}^{x} f(t) d t d x \geq \int_{x_{0}}^{\infty} \frac{1}{x} \int_{0}^{x_{0}} f d t d x \geq \int_{x_{0}}^{\infty} \frac{c_{0}}{x} d x=\infty
$$ showing that $F \notin L^{1}$.

(8) Consider $L^{p}\left(\mathbb{R}^{n}\right)$ with the Lebesgue measure where $0<p<\infty$. Show that
$\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ holds $\forall f, g$ implies that $p \geq 1$. Hint: For $0<p<1$, $x^{p}+y^{p} \geq(x+y)^{p}$.
Solution: Recall that in fact we have, for $x, y \geq 0$,

$$
\left\{\begin{array}{l}
x^{p}+y^{p} \geq(x+y)^{p}, \quad 0<p<1 \\
x^{p}+y^{p}=(x+y)^{p}, \quad p=1 \\
x^{p}+y^{p} \leq(x+y)^{p}, \quad 1<p<\infty
\end{array}\right.
$$

Pick any $a, b \geq 0$ and define $f, g \in L^{p}\left(\mathbb{R}^{n}\right)$ by

$$
f(x)= \begin{cases}a, & x \in[0,1]^{n} \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}b, & x \in[2,3]^{n} \\ 0, & \text { otherwise }\end{cases}
$$

Simple calculations show that $\|f\|_{p}=a,\|g\|_{p}=b$ and $\|f+g\|_{p}=\left(a^{p}+b^{p}\right)^{1 / p}$.
Now the hypothesis implies $a^{p}+b^{p} \geq(a+b)^{p}$. Hence, $p \geq 1$.
(9) Consider $L^{p}(\mu), 0<p<1$. Then $\frac{1}{q}+\frac{1}{p}=1, q<0$.
(a) Prove that $\|f g\|_{1} \geq\|f\|_{p}\|g\|_{q}$.
(b) For $f, g \geq 0,\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p}$.
(c) $d(f, g) \stackrel{\text { def }}{=}\|f-g\|_{p}^{p}$ defines a metric on $L^{p}(\mu)$.

Solution:

(a) Assume that $g>0$ everywhere first. Applying Hölder's inequality with
conjugate exponents $\widetilde{p}=\frac{1}{p}$ and $\widetilde{q}=\frac{1}{1-p}=\frac{\widetilde{p}}{\widetilde{p}-1}$, we have

$$
\begin{aligned}
\left\||f|^{p}\right\|_{1} & =\left\||f g|^{1 / \widetilde{p}}|g|^{-1 / \widetilde{p}}\right\|_{1} \\
& \leq\left\||f g|^{1 / p}\right\|_{\widetilde{p}}\left\||g|^{-1 / p}\right\|_{\widetilde{q}} \\
& =\|f g\|_{1}^{1 / \widetilde{p}}\left\||g|^{-1 /(\widetilde{p}-1)}\right\|_{1}^{(\widetilde{p}-1) / \widetilde{p}} \\
& =\|f g\|_{1}^{p}\left\||g|^{-p /(1-p)}\right\|_{1}^{1-p}, \text { so } \\
\left\||f|^{p}\right\|_{1}^{1 / p} & \leq\|f g\|_{1}\left\||g|^{-p /(1-p)}\right\|_{1}^{1 / p-1} \\
& =\|f g\|_{1}\left\||g|^{q}\right\|_{1}^{-1 / q}, \text { or } \\
\|f\|_{p} & \leq\|f g\|_{1}\|g\|_{q}^{-1}, \text { that is } \\
\|f g\|_{1} & \geq\|f\|_{p}\|g\|_{q} .
\end{aligned}
$$

For a general $g \geq 0$, apply the result to $g_{\varepsilon}=g+\varepsilon$ first and then let g_{ε} tend to g.
(b) Without loss of generality, we can assume $\|f+g\|_{p} \neq 0$. Using part (a), we have

$$
\begin{aligned}
\|f+g\|_{p}^{p} & =\int(f+g)^{p} d \mu \\
& =\int f(f+g)^{p-1} d \mu+\int g(f+g)^{p-1} d \mu \\
& \geq\left(\|f\|_{p}+\|g\|_{p}\right)\left(\int(f+g)^{(p-1)\left(\frac{p}{p-1}\right)} d \mu\right)^{1-\frac{1}{p}} \\
& =\left(\|f\|_{p}+\|g\|_{p}\right)\|f+g\|_{p}^{p-1}, \text { so } \\
\|f+g\|_{p} & \geq\|f\|_{p}+\|g\|_{p} .
\end{aligned}
$$

(c) The fact that for $x, y \geq 0$ and $0<p<1$,

$$
(x+y)^{p} \leq x^{p}+y^{p}
$$

implies

$$
\int|f+g|^{p} d \mu \leq \int|f|^{p} d \mu+\int|g|^{p} d \mu
$$

Hence, $d(f, g) \stackrel{\text { def }}{=}\|f-g\|_{p}^{p}$ defines a metric on $L^{p}(\mu)$.
(10) Give a proof of the separability of $L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$, without using Weierstrass approximation theorem.

Suggestion: Cover \mathbb{R}^{n} with many cubes and consider the combinations $s=$ $\sum \alpha_{j} \chi_{C_{j}}$ where C_{j} are the cubes and $\alpha_{j} \in \mathbb{Q}$.

Solution: See the proof of Problem 11(b).
(11) (a) Let X_{1} be a subset of the metric space (X, d). Show that $\left(X_{1}, d\right)$ is separable if (X, d) is separable.
(b) Let $E \subset \mathbb{R}^{n}$ be Lebesgue measurable and consider $L^{p}(E), 1 \leq p<\infty$, where the measure is understood to be the restriction of \mathcal{L}^{n} on E. Is it separable?

Solution:

(a) let $\left\{x_{i}\right\}$ be a countable dense subset of the metric space, fix natural numbers i, j we pick an element from $X_{1} \cap B\left(x_{i}, 1 / j\right)$ (Ball centre at x_{i} with radius be $1 / j$) if it is non-empty. The resulting set is obviously a countable dense subset in X_{1}
(b) By treating $L^{p}(E)$ as a subset of $L^{p}\left(\mathbb{R}^{n}\right)$, it suffices to prove that the later space is separable. Cover \mathbb{R}^{n} with many cubes and consider the combinations $s=\sum \alpha_{j} \chi_{C_{j}}$ where C_{j} are the cubes and $\alpha_{j} \in \mathbb{Q}$. $\exists s_{m}$ such that $s_{m} \rightarrow f$ in L^{p}-norm, where each s_{m} has the form as s and hence $\left\{s_{m}\right\}$ is countable.

Step 1. $f \in C_{c}\left(\mathbb{R}^{n}\right), f \geq 0$.
For each $m=1,2, \ldots$, cover \mathbb{R}^{n} by cubes $C_{m, j}$ of side length
2^{-m}. Define $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
s_{m}(x)=\sum_{j} \alpha_{j} \chi_{C_{m, j}}
$$

where $\alpha_{j}=2^{-m}\left\lfloor 2^{m} \inf _{C_{m, j}} f\right\rfloor$. Now, we have $0 \leq s_{m} \nearrow f$, or $f-s_{m} \searrow 0$, thus $\left(f-s_{m}\right)^{p} \searrow 0$. Since $0 \leq f-s_{m} \leq f$, we can apply Lebesgue dominated convergence theorem to obtain

$$
\lim _{m \rightarrow \infty}\left\|f-s_{m}\right\|_{p}=\left(\int_{\mathbb{R}^{n}} \lim _{m \rightarrow \infty}\left(f-s_{m}\right)^{p} d \mathcal{L}^{n}\right)^{\frac{1}{p}}=0
$$

Step 2. $f \in C_{c}\left(\mathbb{R}^{n}\right)$.
Write $f=f_{+}-f_{-}$. Use $s_{m}^{+} \nearrow f_{+}$and $s_{m}^{-} \nearrow f_{-}$in L^{p}-norm, as in Step 1. Then

$$
\left\|f-\left(s_{m}^{+}-s_{m}^{-}\right)\right\|_{p} \leq\left\|f_{+}-s_{m}^{+}\right\|_{p}+\left\|f_{-}-s_{m}^{-}\right\|_{p} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

Step 3. $f \in L^{p}\left(\mathbb{R}^{n}\right)$.
Given $\varepsilon>0$, using Proposition 4.14, take $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|f-g\|_{p}<\frac{\varepsilon}{2}$. By Step 2, take s_{M} such that $\left\|g-s_{M}\right\|_{p}<\frac{\varepsilon}{2}$. Hence,

$$
\left\|f-s_{M}\right\|_{p} \leq\|f-g\|_{p}+\left\|g-s_{M}\right\|_{p}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

(12) Let X be a metric space consisting of infinitely many elements and μ a Borel measure on X such that $\mu(B)>0$ on any metric ball (i.e. $B=\left\{x: d\left(x, x_{0}\right)<\right.$ $\rho\}$ for some $x_{0} \in X$ and $\rho>0$. Show that $L^{\infty}(\mu)$ is non-separable.
Suggestion: Find disjoint balls $B_{r_{j}}\left(x_{j}\right)$ and consider $\chi_{B_{r_{j}}\left(x_{j}\right)}$.
Solution: We assume the existence of the sequence of disjoint balls $B_{r_{j}}\left(x_{j}\right)$
and prove the result. Obviously the subset of $L^{\infty}(\mu)$

$$
A=\left\{\sum_{i=1}^{\infty} a_{i} \chi_{B_{r_{j}}\left(x_{j}\right)}, a_{i}=0,1\right\} \text { is uncountable }
$$

let D be any dense set in $L^{\infty}(\mu)$, fix $a \in A, \exists y_{a} \in D$ s.t

$$
d\left(y_{a}, a\right)<\frac{1}{3} \text { and } y_{a} \neq y_{b} \text { if } a \neq b
$$

Result follows from the uncountability of $\left\{y_{a}, a \in A\right\}$. It remains to prove the existence of disjoints balls. We claim that if there is a countable subset $J=\left\{x_{i}\right\}$ such that $\forall j, x_{j}$ is not a limit point of J, then there is sequence of disjoint balls. $\exists r_{1}>0$, such that $B_{2 r_{1}}\left(x_{1}\right) \cap J \backslash\left\{x_{1}\right\}=\emptyset$. Let $\overline{B_{r}(y)}$ be closure of the ball $B_{r}(y), \exists r_{2}>0$, such that $B_{2 r_{2}}\left(x_{2}\right) \subseteq{\overline{B_{r_{1}}\left(x_{1}\right)}}^{c}$ and $B_{2 r_{2}}\left(x_{2}\right) \cap J \backslash\left\{x_{2}\right\}=\emptyset$. We obtain the desired sequence of ball by repeating the process. Now if there are a point y and a countable F s.t y is the only limit point of F, then let $F \backslash\{y\}$ be our J. Otherwise, we can take any countable subset of the space be J.
(13) Show that $L^{1}(\mu)^{\prime}=L^{\infty}(\mu)$ provided (X, \mathfrak{M}, μ) is σ-finite, i.e., $\exists X_{j}, \mu\left(X_{j}\right)<$ ∞, such that $X=\bigcup X_{j}$.
Hint: First assume $\mu(X)<\infty$. Show that $\exists g \in L^{q}(\mu), \forall q>1$, such that

$$
\Lambda f=\int f g d \mu, \quad \forall f \in L^{p}, p>1
$$

Next show that $g \in L^{\infty}(\mu)$ by proving the set $\{x:|g(x)| \geq M+\varepsilon\}$ has measure zero $\forall \varepsilon>0$. Here $M=\|\Lambda\|$.

Solution:

Step 1. $\mu(X)<\infty$.
In this case, Hölder's inequality implies that a continuous linear func-
tional Λ on $L^{1}(X)$ has a restriction to $L^{p}(X)$ which is again continuous since

$$
\begin{equation*}
|\Lambda f| \leq\|\Lambda\|\|f\|_{1} \leq\|\Lambda\| \mu(X)^{1 / q}\|f\|_{p} \tag{2}
\end{equation*}
$$

for all $p \geq 1$. By the proof for $p>1$ in the lecture notes, we have the existence of a unique $v_{p} \in L^{q}(X)$ such that $\Lambda f=\int v_{p} f d \mu$ for all $f \in L^{p}(X)$. Moreover, since $L^{r}(X) \subset L^{p}(X)$ for $r \geq p$ (by Hölder's inequality) the uniqueness of v_{p} implies that v_{p} is, in fact, independent of p, i.e. this function (which we now call v) is in every $L^{r}(X)$-space for $1<r<\infty$.

If we now pick some conjugate exponents q and p with $p>1$ and choose $f=|v|^{q-2} \bar{v}$ in (2), we obtain

$$
\begin{aligned}
\int|v|^{q} d \mu & =\Lambda f \\
& \leq\|\Lambda\| \mu(X)^{1 / q}\left(\int|v|^{(q-1) p} d \mu\right)^{1 / p} \\
& =\|\Lambda\| \mu(X)^{1 / q}\|v\|_{q}^{q-1},
\end{aligned}
$$

and hence $\|v\|_{q} \leq\|\Lambda\| \mu(X)^{1 / q}$ for all $q<\infty$. We claim that $v \in L^{\infty}(X)$; in fact $\|v\|_{\infty} \leq\|\Lambda\|$. Suppose that $\mu(\{x \in X:|v(x)|>$ $\|\Lambda\|+\varepsilon\})=M>0$. Then $\|v\|_{q} \geq(\|\Lambda\|+\varepsilon) M^{1 / q}$, which exceeds $\|\Lambda\| \mu(X)^{1 / q}$ if q is big enough. Thus $v \in L^{\infty}(X)$ and $\Lambda f=\int v f d \mu$ for all $f \in L^{p}(X)$ for any $p>1$. If $f \in L^{1}(X)$ is given, then $\int|v||f| d \mu<\infty$. Replacing f by $f^{k}=f \chi_{\{x:|f(x)| \leq k\}}$, we note that $\left|f^{k}\right| \leq|f|$ and $f^{k}(x) \rightarrow f(x)$ pointwise as $k \rightarrow \infty$; hence, by dominated convergence, $f^{k} \rightarrow f$ in $L^{1}(X)$ and $v f^{k} \rightarrow v f$ in $L^{1}(X)$. Thus

$$
\Lambda f=\lim _{k \rightarrow \infty} \Lambda f^{k}=\lim _{k \rightarrow \infty} \int v f^{k} d \mu=\int v f d \mu
$$

Step 2. $\mu(X)=\infty$.

The previous conclusion can be extended to the case that $\mu(X)=\infty$ but X is σ-finite. Then

$$
X=\bigcup_{j=1}^{\infty} X_{j}
$$

with $\mu\left(X_{j}\right)$ finite and with $X_{j} \cap X_{k}$ empty whenever $j \neq k$. Any $L^{1}(X)$ function f can be written as

$$
f(x)=\sum_{j=1}^{\infty} f_{j}(x)
$$

where $f_{j}=\chi_{j} f$ and χ_{j} is the characteristic function of $X_{j} . f_{j} \mapsto$ Λf_{j} is then an element of $L^{1}\left(X_{j}\right)^{\prime}$, and hence there is a function $v_{j} \in L^{\infty}\left(X_{j}\right)$ such that $\Lambda f_{j}=\int_{X_{j}} v_{j} f_{j} d \mu=\int_{X_{j}} v_{j} f d \mu$. The important point is that each v_{j} is bounded in $L^{\infty}\left(X_{j}\right)$ by the same $\|\Lambda\|$. Moreover, the function v, defined on all of X by $v(x)=v_{j}(x)$ for $x \in X_{j}$, is clearly measurable and bounded by $\|\Lambda\|$. Thus, we have $\Lambda f=\int_{X} v f d \mu$ by the countable additivity of the measure μ. If there exist $v, w \in L^{\infty}(X)$ such that

$$
\Lambda f=\int_{X} v f d \mu=\int_{X} w f d \mu, \quad \forall f \in L^{1}(X)
$$

then

$$
\int_{X}(v-w) f d \mu=0, \quad \forall f \in L^{1}(X)
$$

Suppose, on the contrary, that $(v-w)>0$ on some $A \subset \mathfrak{M}$ with $0<\mu(A)<\infty$. By taking $f=\chi_{A}$ one arrives at a contradiction. Thus, given $\Lambda \in L^{1}(X)$ there corresponds a unique $v \in L^{\infty}(X)$.
(14) (a) For $1 \leq p<\infty,\|f\|_{p},\|g\|_{p} \leq R$, prove that

$$
\int\left||f|^{p}-|g|^{p}\right| d \mu \leq 2 p R^{p-1}\|f-g\|_{p}
$$

(b) Deduce that the map $f \mapsto|f|^{p}$ from $L^{p}(\mu)$ to $L^{1}(\mu)$ is continuous.

Hint: Try $\left|x^{p}-y^{p}\right| \leq p|x-y|\left(x^{p-1}+y^{p-1}\right)$.

Solution:

(a) Notice that $\left|x^{p}-y^{p}\right| \leq p|x-y|\left(x^{p-1}+y^{p-1}\right)$, which follows form the mean value theorem applying to $h(x)=x^{p}$. Then it follows easily from Hölder's inequality that

$$
\int\left||f|^{p}-|g|^{p}\right| d \mu \leq 2 p R^{p-1}\|f-g\|_{p}
$$

(b) This is a direct consequence of (a).

