## MATH5011 Exercise 6

## Suggested Solutions

(1) Show that $\mathcal{C}=\left\{x \in[0,1]: x=0 . a_{1} a_{2} a_{3} \cdots, a_{j} \in\{0,2\}\right.$ in one of its ternary expansion.\}.

Solution: Write $\mathcal{C}_{0}=[0,1], \mathcal{C}_{1}=[0,1 / 3] \cup[2 / 3,1]$, etc. Then clearly we have $\mathcal{C}_{0}=\left\{x \in[0,1]: x=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}, a_{k} \in\{0,1,2\}\right.$, in one of its ternary expansion. $\}$ and $\mathcal{C}_{1}=\left\{x \in[0,1]: x=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}, a_{1} \in\{0,2\}, a_{k} \in\{0,1,2\}\right.$ $\forall k>1$, in one of its ternary expansion. $\}$ and so on. Inductively we have $\mathcal{C}_{n}=\left\{x \in[0,1]: x=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}, a_{k} \in\{0,2\} \forall k \leq n, a_{k} \in\{0,1,2\} \forall k>n\right.$, in one of its ternary expansion.\} and the result follows if we take the intersection over $n \in \mathbb{N}$.
(2) Let $0<\varepsilon<1$. Construct an open set $G \subset[0,1]$ which is dense in $[0,1]$ but $\mathcal{L}^{1}(G)=\varepsilon$.

Solution: Similar to the construction of Cantor's familiar "middle thirds" set. Define $K_{0}=[0,1]$ and inductively define $K_{n} \subset K_{n-1}$ by removing an open interval of length $2(1-\varepsilon) 2^{-2 n}$. By the construction each $K_{n}$ has $2^{n}$ connected components with length $a_{n}$ which satisfy

$$
\left\{\begin{array}{l}
a_{n}=\frac{1}{2}\left(a_{n-1}-2 \varepsilon 2^{-2 n}\right), \quad n=1,2, \ldots \\
a_{0}=1
\end{array}\right.
$$

from which we get $a_{n}=(1-\varepsilon) 2^{-n}+\varepsilon 2^{-2 n}$. Thus

$$
\mathcal{L}^{1}(K)=\lim _{n \rightarrow \infty} \mathcal{L}^{1}\left(K_{n}\right)=\lim _{n \rightarrow \infty} 2^{n} a_{n}=1-\varepsilon
$$

Take $G=[0,1] \backslash K$, then $\mathcal{L}^{1}(G)=\varepsilon$. On the other hand, $G$ is dense in $[0,1]$ since the interior of $K$ is empty.
(3) Here we construct a Cantor-like set, or a Cantor set with positive measure, with positive measure by modifying the construction of the Cantor set as follows. Let $\left\{a_{k}\right\}$ be a sequence of positive numbers satisfying

$$
\gamma \equiv \sum_{k=1}^{\infty} 2^{k-1} a_{k}<1
$$

Construct the set $\mathcal{S}$ so that at the $k$ th stage of the construction one removes $2^{k-1}$ centrally situated open intervals each of length $a_{k}$. Establish the facts:
(a) $\mathcal{L}^{1}(\mathcal{S})=1-\gamma$,
(b) $\mathcal{S}$ is perfect,
(c) $\mathcal{S}$ is uncountable.

## Solution:

(a) As the intervals removed at the same stage or different stages are mutually disjoint, we have

$$
\begin{aligned}
\mathcal{L}^{1}(\mathcal{S}) & =1-\sum_{k=1}^{\infty} 2^{k-1} \text { length of interval removed in the } \mathrm{k} \text { th stage } \\
& =1-\sum_{k=1}^{\infty} 2^{k-1} a_{k} \\
& =1-\gamma
\end{aligned}
$$

Define $S_{0}=[0,1]$ and inductively define $S_{n} \subset S_{n-1}$ by removing an open interval of length $a_{n}$. Obviously by the construction each $S_{n}$ has
$2^{n}$ connected components with length $b_{n}$ which satisfy

$$
\left\{\begin{array}{l}
b_{n}=\frac{1}{2}\left(b_{n-1}-a_{n}\right), \quad n=1,2, \ldots \\
b_{0}=1
\end{array}\right.
$$

By our construction of $S_{n}, b_{n}$ is a non-negative decreasing sequence, so $\lim _{n \rightarrow \infty} b_{n}$ exist. $\gamma<\infty \Rightarrow a_{n} \rightarrow 0$. Therefore

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

(b) If $x \in S$, then $x$ belongs some connected component of $S_{n}, \forall n \in \mathbb{N}$. Observe that the end points of the $2^{n}$ intervals of $S_{n}$ are in $S$, so $\exists y_{n}$ end point of one of the interval s.t.

$$
\left|y_{n}-x\right| \leq b_{n} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

We have $S$ is a perfect set.
(c) We try to prove by contradiction. Suppose $S$ is countable and let $s_{n}$ be an enumeration of the set. $s_{1}$ belongs to exactly one of the two intervals in $S_{1}$, denote the interval which fails to contain $s_{1}$ by $F_{1}$. In $S_{2}, 2$ disjoint intervals $\subseteq F_{1}$ are obtained by removing an central interval of length $a_{2}$ from $F_{1}$, one of them say $F_{2}$ must fail to contain $s_{2}$. Repeating the process, we have decreasing sequence of closed interval $F_{n}$ of length $b_{n}$ s.t $s_{n}$ does not belongs to $F_{n}$ and

$$
\phi \neq \bigcap_{n=1}^{\infty} F_{n} \subseteq S
$$

Hence

$$
\exists s \in S \text { and } s \neq s_{n}, \forall n \in \mathbb{N} .
$$

We have a contradiction.
(4) Let $A$ be the subset of $[0,1]$ which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $\mathcal{L}^{1}(A)$.
Solution: Let $B=\{0,1,2,3,5,6,7,8,9\}$, the set $F_{0}=\{x \in[0,1]: x=$ $\left.0.4 a_{2} a_{3} \cdots, a_{j}=0,1,2, \cdots, 9\right\}=\left[\frac{4}{10}, \frac{5}{10}\right]$ is of Lebesgue measure $\frac{1}{10}$. Fix $y_{1} \in B,|B|=9^{1}=9$, the set $F_{y_{1}}=\left\{x \in[0,1]: x=0 . y_{1} 4 a_{3} \cdots, a_{j}=\right.$ $0,1,2, \cdots, 9 \forall j \geq 3\}=\left[\frac{y_{1}}{10}+\frac{4}{100}, \frac{y_{1}}{10}+\frac{5}{100}\right]$ is of Lebesgues measure $\frac{1}{100}$. Fix $\left(y_{1}, y_{2}\right) \in B^{2},\left|B^{2}\right|=9^{2}=81$, the set $F_{\left(y_{1}, y_{2}\right)}=\{x \in[0,1]: x=$ $\left.0 . y_{1} y_{2} 4 a_{4} \cdots, a_{j}=0,1,2, \cdots, 9 \forall j \geq 4\right\}$ is of measure $\frac{1}{1000}$. Continuing the process, we have

$$
A=[0,1] \backslash\left(\bigcup_{n=1}^{\infty} \bigcup_{\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in B^{n}} F_{\left(y_{1}, y_{2}, \cdots, y_{n}\right)} \cup F_{0}\right)
$$

and as all $F_{\left(y_{1}, y_{2}, \cdots, y_{n}\right)}, F_{0}$ are disjoint, we have

$$
\begin{aligned}
\mathcal{L}^{1}(A) & =1-\frac{1}{10}-\sum_{n=1}^{\infty} \sum_{\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in B^{n}} \frac{1}{10^{n+1}} \\
& =1-\frac{1}{10}-\sum_{n=1}^{\infty} \frac{9^{n}}{10^{n+1}} \\
& =0 .
\end{aligned}
$$

(5) Let $\mathcal{N}$ be a Vitali set in $[0,1]$. Show that $\mathcal{M}=[0,1] \backslash \mathcal{N}$ has measure 1 and hence deduce that

$$
\mathcal{L}^{1}(\mathcal{N})+\mathcal{L}^{1}(\mathcal{M})>\mathcal{L}^{1}(\mathcal{N} \cup \mathcal{M})
$$

Remark: I have no idea what $\mathcal{L}^{1}(\mathcal{N})$ is, except that it is positive.
Solution: We first prove that every Lebesgue measurable subset of $\mathcal{N}$ must be of measure zero. Let $A$ be a Lebesgue measurable subset of $\mathcal{N},\{A+$ $q\}_{q \in \mathbb{Q} \cap[0,1)}$ is a sequence of disjoint measurable set contained inside $[-1,2]$.

By translational invariance of Lebesgue measure,

$$
\mathcal{L}^{1}\left(\bigcup_{q \in \mathbb{Q} \cap[0,1)} A+q\right)=\sum_{q \in \mathbb{Q} \cap[0,1)} \mathcal{L}^{1}(A+q)=\sum_{q \in \mathbb{Q} \cap[0,1)} \mathcal{L}^{1}(A)<\infty
$$

Therefore we must have

$$
\mathcal{L}^{1}(A)=0
$$

We try to prove by contradiction, suppose there is an open set $G$ s.t. $\mathcal{L}^{1}(G)=$ $1-\varepsilon<1$ and $G \supseteq \mathcal{N}^{c}$. Then $[0,1] \backslash G$ is a measurable subset of $\mathcal{N}$ satisfying

$$
0<\varepsilon=\mathcal{L}^{1}([0,1])-\mathcal{L}^{1}(G) \leq \mathcal{L}^{1}([0,1] \backslash G)
$$

Contradicting to our previous result.
(6) Construct a Borel set $A \subset \mathbb{R}$ such that

$$
0<\mathcal{L}^{1}(A \cap I)<\mathcal{L}^{1}(I)
$$

for every non-empty segment $I$. Is it possible to have $\mathcal{L}^{1}(A)<\infty$ for such a set?

Solution: Without loss of generality, we consider $n=0$ and put $0<c_{0}=$ $b<1$. Choose a sequence $\varepsilon_{m} \searrow b$ with $b<\varepsilon_{m}<1$. For $m=1,2, \ldots, A_{m}$ is an open set constructed as follows:
(a) $A_{1}$ is the open dense set of $[0,1]$ of measure $\varepsilon_{1}$ as in (5).
(b) Each $A_{m}$ is the union of countably many disjoint open intervals $I_{m, k}$ of length $\ell_{m, k}, k=1,2, \ldots$ with $\ell_{m, k}=2\left(1-\varepsilon_{m}\right) 2^{-2 n}$ and $\sum_{k=1}^{\infty} \ell_{m, k}=\varepsilon_{m}$ as in (5).
(c) Having chosen $A_{m}, A_{m+1} \subset A_{m}$ is chosen such that $A_{m+1} \cap I_{m, k}$ is open,

$$
\text { dense in } I_{m, k} \text { and } \mathcal{L}^{1}\left(A_{m+1} \cap I_{m, k}\right)=\frac{\varepsilon_{m+1}}{\varepsilon_{m}} \ell_{m, k}<\ell_{m, k} .
$$

Note that $\mathcal{L}^{1}\left(A_{m+1}\right)=\frac{\varepsilon_{m+1}}{\varepsilon_{m}} \mathcal{L}^{1}\left(A_{m}\right)=\varepsilon_{m+1}$, showing that $(\mathrm{b})$ is valid with $m$ replaced by $m+1$.
Let $A=\bigcap_{m=1}^{\infty} A_{m}$ and $I=(a-\delta, a+\delta) \subset[0,1]$. To show that $0<\mathcal{L}^{1}(A \cap I)<$ $\mathcal{L}^{1}(I)$, we only need to find an open interval $I_{n_{0}, k_{0}} \subset I$ such that

$$
\mathcal{L}^{1}\left(I_{n_{0}, k_{0}} \cap A\right)>0
$$

Let $n_{0}$ satisfy $2^{-2 n_{0}}<\frac{\delta}{4}$. Because $A_{n_{0}}$ is dense in $[0,1]$, there exists a point $p \in A_{n_{0}}$ such that $|p-a|<\frac{\delta}{2}$. By (b), we can pick $k_{0} \in \mathbb{N}$ such that $p \in I_{n_{0}, k_{0}}$. Since $\ell_{n_{0}, k_{0}} \leq 2^{-2 n_{0}+1}<\frac{\delta}{2}$, we get $I_{n_{0}, k_{0}} \subset I$. Moreover, by (c), we obtain

$$
\mathcal{L}^{1}\left(I_{n_{0}, k_{0}} \cap A_{n}\right)=\frac{\varepsilon_{n}}{\varepsilon_{n_{0}}} \ell_{n_{0}, k_{0}} \quad \text { and } \quad \mathcal{L}^{1}\left(I_{n_{0}, k_{0}} \backslash A_{n}\right)=\left(1-\frac{\varepsilon_{n}}{\varepsilon_{n_{0}}}\right) \ell_{n_{0}, k_{0}}
$$

for all $n \geq n_{0}$. Taking $n \rightarrow \infty$, we have

$$
\mathcal{L}^{1}\left(I_{n_{0}, k_{0}} \cap A\right)=\frac{c_{0}}{\varepsilon_{n_{0}}} \ell_{n_{0}, k_{0}}>0 \quad \text { and } \quad \mathcal{L}^{1}\left(I_{n_{0}, k_{0}} \backslash A\right)=\left(1-\frac{c_{0}}{\varepsilon_{n_{0}}}\right) \ell_{n_{0}, k_{0}}>0 .
$$

Finally, we can construct in each $[n, n+1]$, a Borel set $A_{n}$ with $\mathcal{L}^{1}\left(A_{n}\right)=c_{n}$ with $0<c_{n}<1$ such that for every open interval $I \subset[n, n+1], 0<$ $\mathcal{L}^{1}(A \cap I)<\mathcal{L}^{1}(I)$ and

$$
\sum_{n=-\infty}^{\infty} c_{n}=c<\infty
$$

If so, let $A=\bigcup_{n=-\infty}^{\infty} A_{n}$, then $A$ satisfies the condition in the problem and $\mathcal{L}^{1}(A)=c<\infty$.
(7) Let $E$ be a subset of $\mathbb{R}$ with positive Lebsegue measure. Prove that for each $\alpha \in(0,1)$, there exists an open interval $I$ so that

$$
\mathcal{L}^{1}(E \cap I) \geq \alpha \mathcal{L}^{1}(I)
$$

It shows that $E$ contains almost a whole interval. Hint: Choose an open $G$ containing $E$ such that $\mathcal{L}^{1}(E) \geq \alpha \mathcal{L}^{1}(G)$ and note that $G$ can be decomposed into disjoint union of open intervals. One of these intervals satisfies our requirement.

Solution: As $\exists n \in \mathbb{N}$ s.t. $\mathcal{L}^{1}(E \cap(-n, n))>0$, WLOG we may assume that $E$ has finite outer measure, then $\forall \alpha \in(0,1), \exists$ open $G$ s.t. $G \supseteq E$ and

$$
\mathcal{L}^{1}(E)+\frac{(1-\alpha)}{\alpha} \mathcal{L}^{1}(E) \geq \mathcal{L}^{1}(G)
$$

Hence

$$
\mathcal{L}^{1}(E) \geq \alpha \mathcal{L}^{1}(G)
$$

we can write $G=\bigcup_{i=1}^{\infty} I_{i}$ where $I_{i}$ are disjoint open intervals. Then one of these $I_{i}$ must satisfy the desired property, otherwise

$$
\mathcal{L}^{1}(E) \leq \sum_{i=1}^{\infty} \mathcal{L}^{1}\left(E \cap I_{i}\right)<\alpha \sum_{i=1}^{\infty} \mathcal{L}^{1}\left(I_{i}\right)=\alpha \mathcal{L}^{1}(G)<\infty
$$

contradicting the above inequality.
(8) Let $E$ be a measurable set in $\mathbb{R}$ with respect to $\mathcal{L}^{1}$ and $\mathcal{L}^{1}(E)>0$. Show that $E-E$ contains an interval $(-a, a), a>0$. Hint:
(a) $U, V$ open, with finite measure, $x \mapsto \mathcal{L}^{1}((x+U) \cap V)$ is continuous on $\mathbb{R}$.
(b) $A, B$ measurable, $\mu(A), \mu(B)<\infty$, then $x \mapsto \mathcal{L}^{1}((x+A) \cap B)$ is con-
tinuous. For $A \subset U, B \subset V$, try

$$
\mathcal{L}^{1}((x+U) \cap V)-\mathcal{L}^{1}((x+A) \cap B) \mid \leq \mathcal{L}^{1}(U \backslash A)+\mathcal{L}^{1}(V \subset B)
$$

(c) Finally, $x \mapsto \mathcal{L}^{1}((x+E) \cap E)$ is positive at 0 and if $(x+E) \cap E \neq \emptyset$, then $x \in E \backslash E$.

## Solution:

(a) We prove the case when U is an open interval $I$, note for all subset $A, B$ of $\mathbb{R}$,

$$
((x+A) \cap B) \backslash(((y+A) \cap B))=(x+A) \backslash(y+A) \cap B
$$

Therefore

$$
\left|\mathcal{L}^{1}((x+I) \cap V)-\mathcal{L}^{1}((y+I) \cap V)\right| \leq \mathcal{L}^{1}((x+I) \backslash(y+I))+\mathcal{L}^{1}((y+I) \backslash(x+I)) \leq 4|x-y| .
$$

the function is Lipschitz and continuous. In general $U$ can be written as countable union of disjoint open intervals $\left\{I_{i}\right\}$, as $\sum_{i=1}^{\infty} \ell\left(I_{i}\right)<\infty, \exists N$ s.t. for all $k \geq N$,

$$
\sum_{i=k}^{\infty} \ell\left(I_{i}\right)<\varepsilon
$$

We have

$$
\sum_{i=1}^{\infty} \mathcal{L}^{1}\left(\left(x+I_{i}\right) \cap V\right)-\mathcal{L}^{1}\left(\left(y+I_{i}\right) \cap V\right) \leq \sum_{i=1}^{k} \mathcal{L}^{1}\left(\left(x+I_{i}\right) \cap V\right)-\mathcal{L}^{1}\left(\left(y+I_{i}\right) \cap V\right)+2 \varepsilon<3 \varepsilon
$$

for $x$ sufficiently close to $y$. Similarly

$$
\sum_{i=1}^{\infty} \mathcal{L}^{1}\left(\left(y+I_{i}\right) \cap V\right)-\mathcal{L}^{1}\left(\left(x+I_{i}\right) \cap V\right) \leq 3 \varepsilon
$$

We have the function $\mathcal{L}^{1}((x+U) \cap V)$ is continuous.
(b) Obviously, $((x+U) \cap V) \backslash((x+A) \cap B) \subseteq U \backslash A \cup V \backslash B$. Therefore, we have

$$
0 \leq \mathcal{L}^{1}((x+U) \cap V)-\mathcal{L}^{1}((x+A) \cap B) \leq \mathcal{L}^{1}(U \backslash A)+\mathcal{L}^{1}(V \backslash B)
$$

Note RHS is independent on $x, y$, so the result follow from outer regularity of Lebesgue measure.
(c) the function $\mathcal{L}^{1}((x+E) \cap E)$ is continuous and positive at $0, \exists a>0$ s.t the function remain positive on $(-a, a)$, i.e

$$
(x+E) \cap E \neq \emptyset
$$

and $\forall x \in(-a, a), \exists e_{1} e_{2} \in E$ s.t

$$
x=e_{1}-e_{2} \in E-E .
$$

Alternate proof. The following is a simple proof due to Karl Stromberg.
By the regularity of $\mathcal{L}^{1}$, for every $\varepsilon>0$ there are a compact set $K \subset E$ and an open set $U \supset E$ such that

$$
\mathcal{L}^{1}(K)+\varepsilon>\mathcal{L}^{1}(E)>\mathcal{L}^{1}(U)-\varepsilon .
$$

For our purpose it is enough to choose $K$ and $U$ such that

$$
2 \mathcal{L}^{1}(K)>\mathcal{L}^{1}(U)
$$

Since $K \subset U$, there is an open cover of $K$ that is contained in $U$. Since $K$ is
compact, one can choose a small neighborhood $V$ of 0 such that

$$
K+V \subset U .
$$

Let $v \in V$, and suppose

$$
(K+v) \cap K=\emptyset .
$$

Then,

$$
2 \mathcal{L}^{1}(K)=\mathcal{L}^{1}(K+v)+\mathcal{L}^{1}(K)<\mathcal{L}^{1}(U)
$$

contradicting our choice of $K$ and $U$. Hence for all $v \in V$ there exists $k_{1}, k_{2} \in K \subset E$ such that

$$
k_{1}+v=k_{2},
$$

which means that $V \subset E-E$.
(9) Give an example of a continuous map $\phi$ and a measurable $f$ such that $f \circ \phi$ is not measurable. Hint: May use the function $h=x+g(x)$ where $g$ is the Cantor function as $\phi$.

Solution: Let $h=x+g(x)$ where $g$ is the Cantor function. Then $h:[0,1] \rightarrow$ $[0,2]$ is a strictly monotonic and continuous map, so its inverse $\phi=h^{-1}$ is continuous too. Since $g$ is constant on every interval in the complement of C, one has that $h$ maps such an interval to an interval of the same length. Hence $\mu(h(C))=1$, where $C$ is the cantor set. Then $h(C)$ contains a nonmeasurable set $A$ due to Proposition 3.3. Let $B=\phi(A)$. Set $f=\chi_{B}$. Then $f \circ \phi$ is not measurable since its inverse image of 1 is $A$.

