MATH5011

Exercise 5 Suggested Solution

Problems 2 and 3 are optional. In Problems 6, 7 and 8 we continue the study of the *n*-dimensional Lebesgue measure starting in Exercise 3. In Problems 9-11 we review the basic facts on the Cantor set. Both topics will be further discussed in Lecture 6.

- (1) Let $f: X \to (-\infty, \infty]$ be l.s.c. (lower semi-continuous) where X is a topological space. Show that
 - (a) αf is l.s.c. $\forall \alpha \geq 0$,
 - (b) $g \text{ l.s.c} \Rightarrow \min\{f, g\} \text{ l.s.c},$
 - (c) $f_{\alpha} \text{ l.s.c} \Rightarrow \sup_{\alpha} f_{\alpha} \text{ l.s.c.},$
 - (d) g l.s.c. $\Rightarrow f + g$ l.s.c.
 - (e) $\infty > f > 0 \Rightarrow 1/f$ is u.s.c..

Solution:

(a) When $\alpha = 0$, $(\alpha f)^{-1}((t,\infty]) = \begin{cases} X, & \text{if } t < 0, \\ \phi, & \text{if } t \ge 0, \end{cases}$

which is clearly open. When $\alpha > 0$, the assertion follows from

$$(\alpha f)^{-1}((t,\infty]) = \{x : \alpha f(x) > t\} = f^{-1}((t/\alpha,\infty]).$$

(b) It follows from

$$(\min\{f,g\})^{-1}((t,\infty]) = \{x \in X : f(x) > t \text{ and } g(x) > t\}$$
$$= f^{-1}((t,\infty]) \cap g^{-1}((t,\infty]).$$

(c) It follows from

$$\left(\sup_{\alpha} f_{\alpha}\right)^{-1} (t, \infty] = \{x \in X : f_{\alpha} > t \text{ for some } \alpha\}$$
$$= \bigcup_{\alpha} f^{-1}((t, \infty]).$$

(d) It follows from

$$(f+g)^{-1}(t,\infty] = \{x \in X : f(x) + g(x) > t\}$$

=
$$\bigcup_{r \in \mathbb{Q}} \{x \in X : f(x) > r > t - g(x)\}$$

=
$$\bigcup_{r \in \mathbb{Q}} (f^{-1}((r,\infty]) \cap g^{-1}((t-r,\infty])).$$

(e) It suffices to check that for any real number t, we have $\{x \in X : -\frac{1}{f(x)} > t\}$ is open. Case 1 (t is non-negative).

$$\{x \in X : -\frac{1}{f(x)} > t\} = \{x \in X : -1 > tf(x)\} = \phi.$$

Case 2 (t is negative).

$$\{x \in X : -\frac{1}{f(x)} > t\} = \{x \in X : -1 > tf(x)\} = \{x \in X : -\frac{1}{t} < f(x)\}$$

is open by lower semi-continuity of f.

(2) Let X be a locally compact Hausdorff space. Let $f \ge 0$ be l.s.c.. Show that

$$f = \sup\{g : g \in C_c(X), g \ge 0, g \le f\}.$$

(Hint: Use Urysohn's lemma to construct, for $0 < a < f(x_0), g(x_0) = a,$ $g \in [0, a],$ etc.) **Solution**: If $f(x_0) = 0$, then $g(x) \equiv 0$ satisfies condition. If $f(x_0) > 0$, for $\varepsilon > 0$, we need to find a l.s.c $g, f \ge g \ge 0$ and $g(x_0) \ge f(x_0) - \varepsilon$. By l.s.c, \exists open set $G \ni x_0$ s.t.

$$f(x) > f(x_0) - \varepsilon, \forall x \in G.$$

Fix $G_1 \ni x_0$, open, $\overline{G_1}$ is compact and $\overline{G_1} \subset G$. Using Urysohn's lemma, $\exists \varphi$, $0 \le \varphi \le 1$, $\varphi \equiv 1$ on $\overline{G_1}$, $\operatorname{spt} \varphi \subset G$. Then $g(x) = (f(x_0) - \varepsilon)\varphi(x)$ satisfies $g(x) \le f(x), \forall x \in G$ and

$$g(x_0) = (f(x_0) - \varepsilon)\varphi(x_0) = f(x_0) - \varepsilon \le f(x_0).$$

(3) Let X be a compact topological space. Show that every l.s.c function from X to \mathbb{R} attains its minimum, that is, there exists some $x \in X$ such that $f(x) \leq f(y), \ \forall y \in X.$

Solution: Let $f: X \to \mathbb{R}$ l.s.c, X compact. First, we claim that \exists m s.t.

$$f(x) \ge m, \forall x \in X.$$

 $G_n = \{x : f(x) > n\}, n \in \mathbb{Z} \text{ is open. By compactness of X},\$

$$X = \bigcup_{n=1}^{\infty} G_n \Rightarrow X = \bigcup_{n=1}^{N} G_n.$$

Therefore $f(x) \ge N$. Second, let $\{x_n\}, f(x_n) \to \inf f \equiv m$. $F_j = \{x : f(x) \le m + 1/j\}$ is non-empty closed set, so

$$\bigcap_{j=1}^{\infty} F_j \neq \phi$$

and

$$\exists x_0 \in \bigcap_{j=1}^{\infty} F_j, f(x_0) \le m \Rightarrow f(x_0) = m.$$

(4) Show that every semicontinuous function is a Borel function.

Solution: Let f be a lower semicontinuous function. As every open set in $[-\infty, \infty]$ can be written as a countable union of (a, b), $[\infty, b)$, $(a, \infty]$ and f takes value in $(-\infty, \infty]$. Therefore it suffices to show that $f^{-1}(a, b)$ and $f^{-1}(a, \infty]$ are Borel sets. By the proposition 2.14, the later set is an open set and hence is a Borel set. $X \setminus f^{-1}(a, \infty] = f^{-1}(-\infty, a]$ is closed and

$$f^{-1}(-\infty, a) = \bigcup_{n=1}^{\infty} f^{-1}(-\infty, a - 1/n]$$

is a Borel set. Therefore

$$f^{-1}(a,b) = f^{-1}(-\infty,b) \cap f^{-1}(a,\infty]$$

is a Borel set. We have the preimage of open set of f is Borel set, so f is Borel function. the case for upper semicontinuos is similar.

(5) Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable. Show that there exist Borel measurable functions $g, h, g(x) \leq f(x) \leq h(x)$ for all $x \in \mathbb{R}^n$ such that g(x) = h(x) a.e.

Solution: As Lebesgue measure on \mathbb{R}^n is σ -finite and outer regular, we apply Proposition 2.17 of Chapter 2 and obtain a Borel function \tilde{g} and a null set N s.t.

$$f(x) = \tilde{g}(x), \forall x \in \mathbb{R}^n \setminus N.$$

By outer regularity of Lebesgue measure, $\exists G_{\delta}$ set W s.t W is Lebesgue measure zero and $N \subseteq W$. We define two Borel functions in the following way,

$$g(x) = \begin{cases} \tilde{g}(x), & \text{if } x \in \mathbb{R}^n \setminus W, \\ -\infty, & \text{if } x \in W, \end{cases}$$
$$h(x) = \begin{cases} \tilde{g}(x), & \text{if } x \in \mathbb{R}^n \setminus W, \\ \infty, & \text{if } x \in W, \end{cases}$$

Obviously, g and h are Borel functions s.t

$$g(x) \le f(x) \le h(x), \forall x \in \mathbb{R}^n$$

and

$$g(x) = h(x)$$
 a.e..

(6) Let λ be a Borel measure and μ a Riesz measure on ℝⁿ such that λ(G) = μ(G) for all open sets G. Show that λ coincides with μ on B.
Solution: Let E be a Borel set. ∀ε > 0,∃ closed set F ⊆ E and open set G ⊇ E s.t

$$\mu(G \setminus F) < \varepsilon,$$

 \mathbf{SO}

$$\mu(G) \le \mu(F) + \mu(G \setminus F) < \mu(E) + \varepsilon.$$

As $G \setminus F$ is open, $\lambda(G \setminus F) = \mu(G \setminus F) < \varepsilon$, so

$$\lambda(E) \leq \lambda(G)$$

= $\mu(G)$
< $\mu(E) + \varepsilon \Rightarrow \lambda(E) \leq \mu(E).$

$$\mu(E) \le \mu(G) = \lambda(G) \le \lambda(F) + \lambda(G \setminus F)$$
$$\le \lambda(E) + \varepsilon \Rightarrow \mu(E) \le \lambda(E)$$

•

(7) A characterization of the Lebesgue measure based on translational invariance. Let $(\mathbb{R}^n, \mathcal{B}, \mu)$ be a Borel measure space whose measure μ is translational invariant and is nontrivial in the sense that there exists some Borel set A such that $\mu(A) \in (0, \infty)$. Show that there exists a positive constant c such that $c\mu$ is the restriction of the Lebesgue measure on \mathcal{B} . Hint: First show that $\mu(C) = \mu(\overline{C})$ for every open cube C and then appeal to the problem above. Solution:We first claim that $\mu(R) > 0$ whenever R is a cube. By the assumption, $\exists A \in \mathcal{B} \text{ s.t.} \mu(A) > 0$. Moreover

$$A = \bigcup_{j=1}^{\infty} (A \cap B_j),$$

where $B_j = B_j(0)$ ball.

$$\mu(A) \le \sum_{j=1}^{\infty} \mu(A \cap B_j) \Rightarrow \exists A \cap B_j, \mu(A \cap B_j) > 0.$$

Therefore we may assume that \exists bound set A s.t. $\mu(A) > 0$. By translational invariance, we may cover A with finitely many copy of R, then we know that $\mu(R) > 0$. By a problem in Exercise 3 we know that every open G can be written as

$$G = \bigcup_{j} R_j, R_j$$
 almost disjoint closed cubes .

Again by the translational invariance of μ , we have the face of cube R are of

 μ measure zero and

$$\mu(R) = \mu(\overline{R}).$$

Hence \forall open G,

$$\mu(G) = \mathcal{L}^n(G)$$

By Problem 6, we are done.

(8) Let K be compact in \mathbb{R}^n and $K^{\varepsilon} = \{x : \operatorname{dist}(x, K) < \varepsilon\}$ be open. Show that $\mathcal{L}^n(K^{\varepsilon}) \to \mathcal{L}^n(K)$ as $\varepsilon \to 0$.

Solution: Since K is a bounded set due to compactness, K^{ε} is also bounded for any $\varepsilon > 0$. Observe that $K = \bigcap_k K^{1/k}$ also due to compactness of K. Since $\{K^{1/k}\}_{k=1}^{\infty}$ is a descending sequence of sets, one has

$$\mathcal{L}^{n}(K) = \mathcal{L}^{n}(\bigcap_{k=1}^{\infty} K^{1/k}) = \lim_{k \to \infty} \mathcal{L}^{n}(K^{1/k}).$$

- (9) Let A and B be non-empty measurable sets in \mathbb{R}^n such that $(1 \lambda)A + \lambda B$ is also measurable for all $\lambda \in (0, 1)$. Show that Brunn-Minkowski inequality is equivalent to either one of the following inequalities:
 - (a) $\mathcal{L}^n((1-\lambda)A + \lambda B) \ge (1-\lambda)\mathcal{L}^n(A) + \lambda \mathcal{L}^n(B).$

(b)
$$\mathcal{L}^n((1-\lambda)A + \lambda B) \ge \min \{\mathcal{L}^n(A), \mathcal{L}^n(B)\}.$$

Solution: By prop 3.2 of chapter 3, we know that for all Lebesgue measurable set A and and real number c, cA is also Lebesgue measurable and

$$\mathcal{L}^n(cA) = |c|^n \mathcal{L}^n(A).$$

Brunn-Minkowski inequality \Rightarrow a):

$$\mathcal{L}^n \big((1-\lambda)A + \lambda B \big)^{1/n} \geq \mathcal{L}^n ((1-\lambda)A)^{1/n} + \mathcal{L}^n (\lambda B)^{1/n}$$
$$= (1-\lambda)\mathcal{L}^n (A)^{1/n} + \lambda \mathcal{L}^n (B)^{1/n}.$$

a) \Rightarrow b):

$$\mathcal{L}^{n} ((1-\lambda)A + \lambda B)^{1/n} \geq (1-\lambda)\mathcal{L}^{n}(A)^{1/n} + \lambda \mathcal{L}^{n}(B)^{1/n}$$

$$\geq (1-\lambda)\min\left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\} + \lambda \min\left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\}$$

$$= \min\left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\}.$$

b) \Rightarrow Brunn-Minkowski inequality: Now let A, B be measurable sets s.t. A + B is also measureable. W.L.O.G., A and B are of finite measure. If A or B is measure zero, we are done. We may suppose

$$\mathcal{L}^n(A)$$
 and $\mathcal{L}^n(B) > 0$.

Let $J = \mathcal{L}^n(A)^{1/n} + \mathcal{L}^n(B)^{1/n} > 0, \lambda = \frac{\mathcal{L}^n(B)^{1/n}}{J} \in (0, 1)$, by inner regularity for sufficiently small ε , $\exists K_1 \subseteq A, K_2 \subseteq B$ non empty compact sets s.t.

$$\mathcal{L}^n(A \setminus K_1) < \varepsilon.$$

and

$$\mathcal{L}^n(B\setminus K_2)<\varepsilon.$$

$$\mathcal{L}^{n}\left(\frac{A+B}{J}\right) \geq \mathcal{L}^{n}\left(\frac{K_{1}+K_{2}}{J}\right)$$
$$= \mathcal{L}^{n}\left((1-\lambda)\frac{K_{1}}{J(1-\lambda)} + \lambda\frac{K_{2}}{J\lambda}\right)$$
$$\geq \min\left\{\mathcal{L}^{n}\left(\frac{K_{1}}{J(1-\lambda)}\right), \mathcal{L}^{n}\left(\frac{K_{2}}{J\lambda}\right)\right\}$$
$$\geq 1 - \frac{\varepsilon}{\min\left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\}},$$

and the result follows by taking $\varepsilon \to 0$.