MATH5011

Exercise 5 Suggested Solution

Problems 2 and 3 are optional. In Problems 6, 7 and 8 we continue the study of the n-dimensional Lebesgue measure starting in Exercise 3. In Problems 9-11 we review the basic facts on the Cantor set. Both topics will be further discussed in Lecture 6.
(1) Let $f: X \rightarrow(-\infty, \infty]$ be l.s.c. (lower semi-continuous) where X is a topological space. Show that
(a) αf is l.s.c. $\forall \alpha \geq 0$,
(b) g l.s.c $\Rightarrow \min \{f, g\}$ l.s.c,
(c) f_{α} l.s.c $\Rightarrow \sup _{\alpha} f_{\alpha}$ l.s.c.,
(d) g l.s.c. $\Rightarrow f+g$ l.s.c.
(e) $\infty>f>0 \Rightarrow 1 / f$ is u.s.c..

Solution:

(a) When $\alpha=0$,

$$
(\alpha f)^{-1}((t, \infty])= \begin{cases}X, & \text { if } t<0 \\ \phi, & \text { if } t \geq 0\end{cases}
$$

which is clearly open. When $\alpha>0$, the assertion follows from

$$
(\alpha f)^{-1}((t, \infty])=\{x: \alpha f(x)>t\}=f^{-1}((t / \alpha, \infty]) .
$$

(b) It follows from

$$
\begin{aligned}
(\min \{f, g\})^{-1}((t, \infty]) & =\{x \in X: f(x)>t \text { and } g(x)>t\} \\
& =f^{-1}((t, \infty]) \cap g^{-1}((t, \infty]) .
\end{aligned}
$$

(c) It follows from

$$
\begin{aligned}
\left(\sup _{\alpha} f_{\alpha}\right)^{-1}(t, \infty] & =\left\{x \in X: f_{\alpha}>t \text { for some } \alpha\right\} \\
& =\bigcup_{\alpha} f^{-1}((t, \infty])
\end{aligned}
$$

(d) It follows from

$$
\begin{aligned}
(f+g)^{-1}(t, \infty] & =\{x \in X: f(x)+g(x)>t\} \\
& =\bigcup_{r \in \mathbb{Q}}\{x \in X: f(x)>r>t-g(x)\} \\
& =\bigcup_{r \in \mathbb{Q}}\left(f^{-1}((r, \infty]) \cap g^{-1}((t-r, \infty])\right)
\end{aligned}
$$

(e) It suffices to check that for any real number t , we have $\left\{x \in X:-\frac{1}{f(x)}>\right.$ $t\}$ is open. Case 1 (t is non-negative).

$$
\left\{x \in X:-\frac{1}{f(x)}>t\right\}=\{x \in X:-1>t f(x)\}=\phi .
$$

Case 2 (t is negative).

$$
\left\{x \in X:-\frac{1}{f(x)}>t\right\}=\{x \in X:-1>t f(x)\}=\left\{x \in X:-\frac{1}{t}<f(x)\right\}
$$

is open by lower semi-continuity of f .
(2) Let X be a locally compact Hausdorff space. Let $f \geq 0$ be l.s.c.. Show that

$$
f=\sup \left\{g: g \in C_{c}(X), g \geq 0, g \leq f\right\}
$$

(Hint: Use Urysohn's lemma to construct, for $0<a<f\left(x_{0}\right), g\left(x_{0}\right)=a$, $g \in[0, a]$, etc.)

Solution: If $f\left(x_{0}\right)=0$, then $g(x) \equiv 0$ satisfies condition. If $f\left(x_{0}\right)>0$, for $\varepsilon>0$, we need to find a l.s.c $g, f \geq g \geq 0$ and $g\left(x_{0}\right) \geq f\left(x_{0}\right)-\varepsilon$. By l.s.c, \exists open set $G \ni x_{0}$ s.t.

$$
f(x)>f\left(x_{0}\right)-\varepsilon, \forall x \in G
$$

Fix $G_{1} \ni x_{0}$, open, $\overline{G_{1}}$ is compact and $\overline{G_{1}} \subset G$. Using Urysohn's lemma, $\exists \varphi$, $0 \leq \varphi \leq 1, \varphi \equiv 1$ on $\overline{G_{1}}, \operatorname{spt} \varphi \subset G$. Then $g(x)=\left(f\left(x_{0}\right)-\varepsilon\right) \varphi(x)$ satisfies $g(x) \leq f(x), \forall x \in G$ and

$$
g\left(x_{0}\right)=\left(f\left(x_{0}\right)-\varepsilon\right) \varphi\left(x_{0}\right)=f\left(x_{0}\right)-\varepsilon \leq f\left(x_{0}\right) .
$$

(3) Let X be a compact topological space. Show that every l.s.c function from X to \mathbb{R} attains its minimum, that is, there exists some $x \in X$ such that $f(x) \leq f(y), \forall y \in X$.

Solution: Let $f: X \rightarrow \mathbb{R}$ l.s.c, X compact. First, we claim that $\exists \mathrm{m}$ s.t.

$$
f(x) \geq m, \forall x \in X
$$

$G_{n}=\{x: f(x)>n\}, n \in \mathbb{Z}$ is open. By compactness of X,

$$
X=\bigcup_{n=1}^{\infty} G_{n} \Rightarrow X=\bigcup_{n=1}^{N} G_{n}
$$

Therefore $f(x) \geq N$. Second, let $\left\{x_{n}\right\}, f\left(x_{n}\right) \rightarrow \inf f \equiv m . F_{j}=\{x: f(x) \leq$ $m+1 / j\}$ is non-empty closed set, so

$$
\bigcap_{j=1}^{\infty} F_{j} \neq \phi
$$

and

$$
\exists x_{0} \in \bigcap_{j=1}^{\infty} F_{j}, f\left(x_{0}\right) \leq m \Rightarrow f\left(x_{0}\right)=m
$$

(4) Show that every semicontinuous function is a Borel function.

Solution: Let f be a lower semicontinuous function. As every open set in $[-\infty, \infty]$ can be written as a countable union of $(a, b),[\infty, b),(a, \infty]$ and f takes value in $(-\infty, \infty]$. Therefore it suffices to show that $f^{-1}(a, b)$ and $f^{-1}(a, \infty]$ are Borel sets. By the proposition 2.14, the later set is an open set and hence is a Borel set. $X \backslash f^{-1}(a, \infty]=f^{-1}(-\infty, a]$ is closed and

$$
f^{-1}(-\infty, a)=\bigcup_{n=1}^{\infty} f^{-1}(-\infty, a-1 / n]
$$

is a Borel set. Therefore

$$
f^{-1}(a, b)=f^{-1}(-\infty, b) \cap f^{-1}(a, \infty]
$$

is a Borel set. We have the preimage of open set of f is Borel set, so f is Borel function. the case for upper semicontinuos is similar.
(5) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be Lebesgue measurable. Show that there exist Borel measurable functions $g, h, g(x) \leq f(x) \leq h(x)$ for all $x \in \mathbb{R}^{n}$ such that $g(x)=h(x)$ a.e.
Solution: As Lebesgue measure on \mathbb{R}^{n} is σ-finite and outer regular, we apply Proposition 2.17 of Chapter 2 and obtain a Borel function \tilde{g} and a null set N s.t.

$$
f(x)=\tilde{g}(x), \forall x \in \mathbb{R}^{n} \backslash N .
$$

By outer regularity of Lebesgue measure, $\exists G_{\delta}$ set W s.t W is Lebesgue measure zero and $N \subseteq W$. We define two Borel functions in the following way,

$$
\begin{aligned}
& g(x)= \begin{cases}\tilde{g}(x), & \text { if } x \in \mathbb{R}^{n} \backslash W, \\
-\infty, & \text { if } x \in W\end{cases} \\
& h(x)= \begin{cases}\tilde{g}(x), & \text { if } x \in \mathbb{R}^{n} \backslash W, \\
\infty, & \text { if } x \in W\end{cases}
\end{aligned}
$$

Obviously, g and h are Borel functions s.t

$$
g(x) \leq f(x) \leq h(x), \forall x \in \mathbb{R}^{n}
$$

and

$$
g(x)=h(x) \text { a.e.. }
$$

(6) Let λ be a Borel measure and μ a Riesz measure on \mathbb{R}^{n} such that $\lambda(G)=\mu(G)$ for all open sets G. Show that λ coincides with μ on \mathcal{B}.

Solution: Let E be a Borel set. $\forall \varepsilon>0, \exists$ closed set $F \subseteq E$ and open set $G \supseteq E$ s.t

$$
\mu(G \backslash F)<\varepsilon
$$

so

$$
\mu(G) \leq \mu(F)+\mu(G \backslash F)<\mu(E)+\varepsilon
$$

As $G \backslash F$ is open, $\lambda(G \backslash F)=\mu(G \backslash F)<\varepsilon$, so

$$
\begin{aligned}
\lambda(E) & \leq \lambda(G) \\
& =\mu(G) \\
& <\mu(E)+\varepsilon \Rightarrow \lambda(E) \leq \mu(E)
\end{aligned}
$$

$$
\begin{aligned}
\mu(E) \leq \mu(G)=\lambda(G) & \leq \lambda(F)+\lambda(G \backslash F) \\
& \leq \lambda(E)+\varepsilon \Rightarrow \mu(E) \leq \lambda(E)
\end{aligned}
$$

(7) A characterization of the Lebesgue measure based on translational invariance. Let $\left(\mathbb{R}^{n}, \mathcal{B}, \mu\right)$ be a Borel measure space whose measure μ is translational invariant and is nontrivial in the sense that there exists some Borel set A such that $\mu(A) \in(0, \infty)$. Show that there exists a positive constant c such that $c \mu$ is the restriction of the Lebesgue measure on \mathcal{B}. Hint: First show that $\mu(C)=\mu(\bar{C})$ for every open cube C and then appeal to the problem above.

Solution:We first claim that $\mu(R)>0$ whenever R is a cube. By the assumption, $\exists A \in \mathcal{B}$ s.t. $\mu(A)>0$. Moreover

$$
A=\bigcup_{j=1}^{\infty}\left(A \cap B_{j}\right)
$$

where $B_{j}=B_{j}(0)$ ball.

$$
\mu(A) \leq \sum_{j=1}^{\infty} \mu\left(A \cap B_{j}\right) \Rightarrow \exists A \cap B_{j}, \mu\left(A \cap B_{j}\right)>0
$$

Therefore we may assume that \exists bound set A s.t. $\mu(A)>0$. By translational invariance, we may cover A with finitely many copy of R, then we know that $\mu(R)>0$. By a problem in Exercise 3 we know that every open G can be written as

$$
G=\bigcup_{j} R_{j}, R_{j} \text { almost disjoint closed cubes }
$$

Again by the translational invariance of μ, we have the face of cube R are of
μ measure zero and

$$
\mu(R)=\mu(\bar{R})
$$

Hence \forall open G,

$$
\mu(G)=\mathcal{L}^{n}(G)
$$

By Problem 6, we are done.
(8) Let K be compact in \mathbb{R}^{n} and $K^{\varepsilon}=\{x: \operatorname{dist}(x, K)<\varepsilon\}$ be open. Show that $\mathcal{L}^{n}\left(K^{\varepsilon}\right) \rightarrow \mathcal{L}^{n}(K)$ as $\varepsilon \rightarrow 0$.

Solution: Since K is a bounded set due to compactness, K^{ε} is also bounded for any $\varepsilon>0$. Observe that $K=\cap_{k} K^{1 / k}$ also due to compactness of K. Since $\left\{K^{1 / k}\right\}_{k=1}^{\infty}$ is a descending sequence of sets, one has

$$
\mathcal{L}^{n}(K)=\mathcal{L}^{n}\left(\bigcap_{k=1}^{\infty} K^{1 / k}\right)=\lim _{k \rightarrow \infty} \mathcal{L}^{n}\left(K^{1 / k}\right)
$$

(9) Let A and B be non-empty measurable sets in \mathbb{R}^{n} such that $(1-\lambda) A+\lambda B$ is also measurable for all $\lambda \in(0,1)$. Show that Brunn-Minkowski inequality is equivalent to either one of the following inequalities:
(a) $\mathcal{L}^{n}((1-\lambda) A+\lambda B) \geq(1-\lambda) \mathcal{L}^{n}(A)+\lambda \mathcal{L}^{n}(B)$.
(b) $\mathcal{L}^{n}((1-\lambda) A+\lambda B) \geq \min \left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\}$.

Solution: By prop 3.2 of chapter 3, we know that for all Lebesgue measurable set A and and real number $c, c A$ is also Lebesgue measurable and

$$
\mathcal{L}^{n}(c A)=|c|^{n} \mathcal{L}^{n}(A)
$$

Brunn-Minkowski inequality \Rightarrow a):

$$
\begin{aligned}
\mathcal{L}^{n}((1-\lambda) A+\lambda B)^{1 / n} & \geq \mathcal{L}^{n}((1-\lambda) A)^{1 / n}+\mathcal{L}^{n}(\lambda B)^{1 / n} \\
& =(1-\lambda) \mathcal{L}^{n}(A)^{1 / n}+\lambda \mathcal{L}^{n}(B)^{1 / n}
\end{aligned}
$$

a) \Rightarrow b):

$$
\begin{aligned}
\mathcal{L}^{n}((1-\lambda) A+\lambda B)^{1 / n} & \geq(1-\lambda) \mathcal{L}^{n}(A)^{1 / n}+\lambda \mathcal{L}^{n}(B)^{1 / n} \\
& \geq(1-\lambda) \min \left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\}+\lambda \min \left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\} \\
& =\min \left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\}
\end{aligned}
$$

b) \Rightarrow Brunn-Minkowski inequality: Now let A, B be measurable sets s.t. $A+B$ is also measureable. W.L.O.G., A and B are of finite measure. If A or B is measure zero, we are done. We may suppose

$$
\mathcal{L}^{n}(A) \text { and } \mathcal{L}^{n}(B)>0
$$

Let $J=\mathcal{L}^{n}(A)^{1 / n}+\mathcal{L}^{n}(B)^{1 / n}>0, \lambda=\frac{\mathcal{L}^{n}(B)^{1 / n}}{J} \in(0,1)$, by inner regularity for sufficiently small $\varepsilon, \exists K_{1} \subseteq A, K_{2} \subseteq B$ non empty compact sets s.t.

$$
\mathcal{L}^{n}\left(A \backslash K_{1}\right)<\varepsilon
$$

and

$$
\mathcal{L}^{n}\left(B \backslash K_{2}\right)<\varepsilon .
$$

$$
\begin{aligned}
\mathcal{L}^{n}\left(\frac{A+B}{J}\right) & \geq \mathcal{L}^{n}\left(\frac{K_{1}+K_{2}}{J}\right) \\
& =\mathcal{L}^{n}\left((1-\lambda) \frac{K_{1}}{J(1-\lambda)}+\lambda \frac{K_{2}}{J \lambda}\right) \\
& \geq \min \left\{\mathcal{L}^{n}\left(\frac{K_{1}}{J(1-\lambda)}\right), \mathcal{L}^{n}\left(\frac{K_{2}}{J \lambda}\right)\right\} \\
& \geq 1-\frac{\varepsilon}{\min \left\{\mathcal{L}^{n}(A), \mathcal{L}^{n}(B)\right\}},
\end{aligned}
$$

and the result follows by taking $\varepsilon \rightarrow 0$.

