MATH5011

Exercise 4 Suggested Solution

(1) Identify the Riesz measures corresponding to the following positive functionals $(X=\mathbb{R})$:
(a) $\Lambda_{1} f=\int_{a}^{b} f d x$, and
(b) $\Lambda_{2} f=f(0)$.

Solution:

(a) $\mu_{1}=$ the restriction of the Lebesgue measure on $[a, b]$.

$$
\mu_{1}(E)=\mathcal{L}^{1}(E \cap[a, b])
$$

(b) The Dirac delta measure at 0 .
(2) Let c be the counting measure on \mathbb{R},

$$
c(A)= \begin{cases}\# A, & A \neq \phi \\ 0, & A=\phi\end{cases}
$$

Is there a positive functional

$$
\Lambda f=\int f d c ?
$$

Solution: No, let $\mathrm{f}(\mathrm{x})$ be a non-negative continuous function of compact support that is 1 for all x in $[0,1]$ and decreases to zero outside the interval,

$$
\int f d c \geq \int \chi_{[0,1]} d c=\infty
$$

(3) Define the distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane to be

$$
\left|y_{1}-y_{2}\right| \text { if } x_{1}=x_{2}, \quad 1+\left|y_{1}-y_{2}\right| \text { if } x_{1} \neq x_{2} .
$$

Show that this is indeed a metric, and that the resulting metric space X is locally compact.

If $f \in C_{c}(X)$, let x_{1}, \ldots, x_{n} be those values of x for which $f(x, y) \neq 0$ for at least one y (there are only finitely many such $x!$), and define

$$
\Lambda f=\sum_{j=1}^{n} \int_{-\infty}^{\infty} f\left(x_{j}, y\right) d y
$$

Let μ be the measure associated with this Λ by Theorem 2.14 in [R]. If E is the x-axis, show that $\mu(E)=\infty$ although $\mu(K)=0$ for every compact $K \subset E$.

Solution: Write $p_{i}=\left(x_{i}, y_{i}\right), i=1,2$. Denote

$$
d\left(p_{1}, p_{2}\right)= \begin{cases}\left|y_{1}-y_{2}\right|, & x_{1}=x_{2} \\ 1+\left|y_{1}-y_{2}\right|, & x_{1} \neq x_{2}\end{cases}
$$

We prove that d is a metric.

- $d\left(p_{1}, p_{2}\right) \geq 0$ and $d\left(p_{1}, p_{2}\right)=0$ if and only if $p_{1}=p_{2}$.
- $d\left(p_{1}, p_{2}\right)=d\left(p_{2}, p_{1}\right)$.
- $d\left(p_{1}, p_{2}\right) \leq d\left(p_{1}, p_{3}\right)+d\left(p_{3}, p_{2}\right)$ holds because $\left|y_{1}-y_{2}\right| \leq\left|y_{1}-y_{3}\right|+\left|y_{3}-y_{2}\right|$.

Now we claim that (X, τ) is a locally compact Hausdorff space. Let τ_{1} be the discrete topology on \mathbb{R}, so every singleton $\{x\}$ is an open set. Then every point $x \in \mathbb{R}$ has the compact set $\{x\}$ as a neighborhood, so that $\left(\mathbb{R}, \tau_{1}\right)$ is a locally compact Hausdorff space. Note that $(X, \tau)=\left(\mathbb{R}, \tau_{1}\right) \times\left(\mathbb{R}, \tau_{2}\right)$, where τ_{2} is the usual topology of \mathbb{R}. The claim follows.

If K is compact in X, the first projection $\operatorname{pr}_{1}(K)$ is compact in $\left(\mathbb{R}, \tau_{1}\right)$. Hence it is a finite set. Therefore K is a finite union

$$
\left\{x_{1}\right\} \times K_{1} \cup \cdots \cup\left\{x_{n}\right\} \times K_{n},
$$

where each $K_{i}, i=1,2, \ldots, n$, is a compact set in $\left(\mathbb{R}, \tau_{2}\right)$.
If $f: X \rightarrow \mathbb{C}$ has compact support, then $\operatorname{spt} f \subset\left\{x_{1}, \ldots, x_{n}\right\} \times \mathbb{R}$. Thus,

$$
\Lambda f=\sum_{j=1}^{n} \int_{-\infty}^{\infty} f\left(x_{j}, y\right) d y
$$

defines a positive linear functional on $C_{c}(X)$.
By the proof of Riesz's representation theorem, the measure μ defined by the equalities

$$
\begin{aligned}
\mu(V) & =\sup _{K \subset V \text { compact }} \mu(K)=\sup _{f \prec V} \Lambda f, \\
\mu(E) & =\inf _{V \supset E \text { open }} \mu(V)
\end{aligned}
$$

is a representing measure for Λ. Using the second equality with the Lebesgue measure m on \mathbb{R}, we observe that

$$
\mu(\{x\} \times K)=m(K) .
$$

Thus μ is characterized by the identity

$$
\mu(\{x\} \times[a, b])=b-a, \quad x \in \mathbb{R} .
$$

Let V be an open set containing $\mathbb{R} \times\{0\}$. Then for $x \in \mathbb{R},(x, 0) \in V$, so that there exists an $\varepsilon_{x}>0$ with

$$
\{x\} \times\left[-\varepsilon_{x}, \varepsilon_{x}\right] \subset V .
$$

This implies that there must be an n with uncountably many $\varepsilon_{x} \geq 1 / n$. (Otherwise, $\varepsilon_{x} \geq 1 / n$ for at most countably many x, contradicting the fact that \mathbb{R} is uncountable.)

Let

$$
K_{x}=\{x\} \times\left[-\frac{\varepsilon_{x}}{2}, \frac{\varepsilon_{x}}{2}\right], \quad \varepsilon_{x} \geq \frac{1}{n} .
$$

For $K=\bigcup_{j=1}^{m} K_{x_{j}}$, we have $\mu(K) \geq \frac{m}{n}$. Hence, if $V \supset \mathbb{R} \times\{0\}$ is open, then $\mu(V) \geq \sup _{m \in \mathbb{N}} \frac{m}{n}=\infty$. This implies $\mu(\mathbb{R} \times\{0\})=\infty$.
Now if K is a compact subset of $\mathbb{R} \times\{0\}$, then $K=\left\{x_{1}, \ldots, x_{n}\right\} \times\{0\}$, which implies $\mu(K)=0$.

Therefore for $E=\mathbb{R} \times\{0\}, \mu(E)=\infty$ while $\sup _{K \subset E \text { compact }} \mu(K)=0$. This means that μ is not inner regular.
(4) Let λ be a Borel measure and μ a Riesz measure on \mathbb{R}^{n} such that $\lambda(G)=\mu(G)$ for all open sets G. Show that λ coincides with μ on \mathcal{B}.

Solution: Let $E \in \mathcal{B}$. For $\varepsilon>0$, by Proposition 2.10, there exists an open set E and a closed set F with $F \subset E \subset G$ such that $\mu(G \backslash F)<\varepsilon$. Since G and $G \backslash F$ are open, λ and μ coincide on them, and one has

$$
\begin{aligned}
\mu(E) & =\mu(G)-\mu(G \backslash E) \geq \mu(G)-\mu(G \backslash F)=\lambda(G)-\lambda(G \backslash F) \\
& \geq \lambda(E)-\varepsilon
\end{aligned}
$$

By changing the position of μ and λ, one has

$$
\lambda(E)-\varepsilon \leq \mu(E) \leq \lambda(E)+\varepsilon
$$

Since this holds for any $\varepsilon>0$, one has $\mu(E)=\lambda(E)$.
(5) Let μ be a Borel measure on \mathbb{R}^{n} such that $\mu(K)<\infty$ for all compact K. Show that μ is the restriction of some Riesz measure on \mathcal{B}. Hint: Use Riesz
representation theorem and Problem 4. This exercise gives a characterization of the Riesz measure on \mathbb{R}^{n}.

Solution: Let λ be the Riesz measure associated with the functional

$$
\Lambda f=\int f d \mu, \quad \forall f \in C_{c}(X)
$$

from the Riesz representation theorem. Let G be an open set. Then

$$
\lambda(G)=\sup \{\Lambda f: f<G\} .
$$

By Urysohns lemma, it follows that $\lambda(G)=\mu(G)$. Then apply Problem 4.
(6) Let μ be a Riesz measure on \mathbb{R}^{n}. Show that for every measurable function f, there exists a sequence of continuous function $\left\{f_{n}\right\}$ such that $f_{n} \rightarrow f$ almost everywhere.

Solution: As μ is finite on compact set, $\left\{x \in \mathbb{R}^{n}:|f(x)|<\infty,|x| \leq m\right\}$ is a μ finite measurable set, by theorem 2.12, let $f_{m}=f \cdot \chi_{\left\{x \in R^{n}:|f(x)|<\infty,|x| \leq m\right\}}$, $\exists g_{m}$ continuous on \mathbb{R}^{n} s.t

$$
\mu\left(\left\{x: f_{m}(x) \neq g_{m}(x)\right\}\right) \leq \frac{1}{2^{m}}
$$

As $\sum_{m=1}^{\infty} \mu\left(\left\{x: f_{m}(x) \neq g_{m}(x)\right\}\right)<\infty$, by Borel-Cantelli Lemma, $\exists \mu$ null set N s.t.

$$
\forall x \in R^{n} \backslash N, \exists K, \forall m \geq K, f_{m}(x)=g_{m}(x)
$$

$\left\{g_{m}\right\}$ obviously converges to $f \chi_{\left\{x \in R^{n}:|f(x)|<\infty\right\}} \mathrm{m}$ a.e.. Similarly, we obtain sequences of continuous function $\left\{h_{m}\right\}$ and $\left\{j_{m}\right\}$ by replacing f_{m} by m.
$\chi_{\left\{x \in R^{n}: f(x)=\infty,|x| \leq m\right\}}$ and $-m \cdot \chi_{\left\{x \in R^{n}: f(x)=-\infty,|x| \leq m\right\}}$, we have

$$
g_{m}+h_{m}+j_{m} \rightarrow \text { fa.e.. }
$$

(7) A step function on \mathbb{R} is a simple function s where $s^{-1}(a)$ is either empty or an interval for every $a \in \mathbb{R}$. Show that for every Lebesgue integrable function f on \mathbb{R}, there exists a sequence of step functions $\left\{s_{j}\right\}$ such that

$$
\lim _{j \rightarrow \infty} \int\left|s_{j}(x)-f(x)\right| d \mathcal{L}^{1}(x)=0
$$

Hint: Approximate f by simple functions (see Ex 2) and then apply Lusin's theorem.

Solution: Without loss of generality, we may assume f is non-negative, it suffices to show for all $\varepsilon>0$, there exists step function ψ s.t.

$$
\int|\psi(x)-f(x)| d \mathcal{L}^{1}(x)<\varepsilon
$$

There exists non-negative simple function $s(x)$ of compact support s.t. $s(x) \leq$ $f(x)$ and

$$
\int|s(x)-f(x)| d \mathcal{L}^{1}(x)<\frac{\varepsilon}{3} .
$$

Let $M=\max _{x \in \mathbb{R}}|s(x)|$, apply Lusin's theorem to $s(x)$, we have a continuous g of compact support, for instance $\subseteq[a, b]$ s.t.

$$
\mathcal{L}^{1}(\{s \neq g\})<\frac{\varepsilon}{6 M+1}
$$

and

$$
\sup _{x \in \mathbb{R}}|g(x)| \leq M
$$

Therefore

$$
\int|g(x)-s(x)| d \mathcal{L}^{1}(x)=\int_{\{s \neq g\}}|g(x)-s(x)| d \mathcal{L}^{1}(x)<\frac{\varepsilon}{3}
$$

The function g is obviously Riemann integrable over $[a, b]$ and the Riemann integral of g is the same as its Lebesgue integral, so \exists step function $\psi \leq g$ s.t

$$
\int|g(x)-\psi(x)| d \mathcal{L}^{1}(x)<\frac{\varepsilon}{3}
$$

and

$$
\begin{aligned}
\int|f(x)-\psi(x)| d \mathcal{L}^{1}(x) & \leq \int f(x)-s(x)+|g(x)-s(x)|+g(x)-\psi(x) d \mathcal{L}^{1}(x) \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

