MATH5011

Exercise 4 Suggested Solution

(1) Identify the Riesz measures corresponding to the following positive functionals $(X = \mathbb{R})$:

(a)
$$\Lambda_1 f = \int_a^b f \, dx$$
, and
(b) $\Lambda_2 f = f(0)$.

Solution:

- (a) μ_1 = the restriction of the Lebesgue measure on [a, b]. $\mu_1(E) = \mathcal{L}^1(E \cap [a, b])$
- (b) The Dirac delta measure at 0.
- (2) Let c be the counting measure on \mathbb{R} ,

$$c(A) = \begin{cases} \#A, & A \neq \phi, \\ 0, & A = \phi. \end{cases}$$

Is there a positive functional

$$\Lambda f = \int f \, dc \quad ?$$

Solution: No, let f(x) be a non-negative continuous function of compact support that is 1 for all x in [0, 1] and decreases to zero outside the interval,

$$\int f dc \ge \int \chi_{[0,1]} dc = \infty.$$

(3) Define the distance between points (x_1, y_1) and (x_2, y_2) in the plane to be

$$|y_1 - y_2|$$
 if $x_1 = x_2$, $1 + |y_1 - y_2|$ if $x_1 \neq x_2$.

Show that this is indeed a metric, and that the resulting metric space X is locally compact.

If $f \in C_c(X)$, let x_1, \ldots, x_n be those values of x for which $f(x, y) \neq 0$ for at least one y (there are only finitely many such x!), and define

$$\Lambda f = \sum_{j=1}^{n} \int_{-\infty}^{\infty} f(x_j, y) \, dy.$$

Let μ be the measure associated with this Λ by Theorem 2.14 in [R]. If E is the x-axis, show that $\mu(E) = \infty$ although $\mu(K) = 0$ for every compact $K \subset E$.

Solution: Write $p_i = (x_i, y_i), i = 1, 2$. Denote

$$d(p_1, p_2) = \begin{cases} |y_1 - y_2|, & x_1 = x_2, \\ 1 + |y_1 - y_2|, & x_1 \neq x_2. \end{cases}$$

We prove that d is a metric.

- $d(p_1, p_2) \ge 0$ and $d(p_1, p_2) = 0$ if and only if $p_1 = p_2$.
- $d(p_1, p_2) = d(p_2, p_1).$
- $d(p_1, p_2) \le d(p_1, p_3) + d(p_3, p_2)$ holds because $|y_1 y_2| \le |y_1 y_3| + |y_3 y_2|$.

Now we claim that (X, τ) is a locally compact Hausdorff space. Let τ_1 be the discrete topology on \mathbb{R} , so every singleton $\{x\}$ is an open set. Then every point $x \in \mathbb{R}$ has the compact set $\{x\}$ as a neighborhood, so that (\mathbb{R}, τ_1) is a locally compact Hausdorff space. Note that $(X, \tau) = (\mathbb{R}, \tau_1) \times (\mathbb{R}, \tau_2)$, where τ_2 is the usual topology of \mathbb{R} . The claim follows.

If K is compact in X, the first projection $pr_1(K)$ is compact in (\mathbb{R}, τ_1) . Hence it is a finite set. Therefore K is a finite union

$$\{x_1\} \times K_1 \cup \cdots \cup \{x_n\} \times K_n,$$

where each K_i , i = 1, 2, ..., n, is a compact set in (\mathbb{R}, τ_2) .

If $f: X \to \mathbb{C}$ has compact support, then $\operatorname{spt} f \subset \{x_1, \ldots, x_n\} \times \mathbb{R}$. Thus,

$$\Lambda f = \sum_{j=1}^{n} \int_{-\infty}^{\infty} f(x_j, y) \, dy$$

defines a positive linear functional on $C_c(X)$.

By the proof of Riesz's representation theorem, the measure μ defined by the equalities

$$\mu(V) = \sup_{K \subset V \text{ compact}} \mu(K) = \sup_{f \prec V} \Lambda f,$$

$$\mu(E) = \inf_{V \supset E \text{ open}} \mu(V)$$

is a representing measure for Λ . Using the second equality with the Lebesgue measure m on \mathbb{R} , we observe that

$$\mu(\{x\} \times K) = m(K).$$

Thus μ is characterized by the identity

$$\mu(\{x\} \times [a,b]) = b - a, \qquad x \in \mathbb{R}.$$

Let V be an open set containing $\mathbb{R} \times \{0\}$. Then for $x \in \mathbb{R}$, $(x, 0) \in V$, so that there exists an $\varepsilon_x > 0$ with

$$\{x\} \times [-\varepsilon_x, \varepsilon_x] \subset V.$$

This implies that there must be an n with uncountably many $\varepsilon_x \geq 1/n$. (Otherwise, $\varepsilon_x \geq 1/n$ for at most countably many x, contradicting the fact that \mathbb{R} is uncountable.)

Let

$$K_x = \{x\} \times \left[-\frac{\varepsilon_x}{2}, \frac{\varepsilon_x}{2}\right], \quad \varepsilon_x \ge \frac{1}{n}.$$

For $K = \bigcup_{j=1}^{m} K_{x_j}$, we have $\mu(K) \ge \frac{m}{n}$. Hence, if $V \supset \mathbb{R} \times \{0\}$ is open, then $\mu(V) \ge \sup_{m \in \mathbb{N}} \frac{m}{n} = \infty$. This implies $\mu(\mathbb{R} \times \{0\}) = \infty$. Now if K is a compact subset of $\mathbb{R} \times \{0\}$, then $K = \{x_1, \dots, x_n\} \times \{0\}$, which implies $\mu(K) = 0$.

Therefore for $E = \mathbb{R} \times \{0\}$, $\mu(E) = \infty$ while $\sup_{K \subset E \text{ compact}} \mu(K) = 0$. This means that μ is not inner regular.

(4) Let λ be a Borel measure and μ a Riesz measure on \mathbb{R}^n such that $\lambda(G) = \mu(G)$ for all open sets G. Show that λ coincides with μ on \mathcal{B} .

Solution: Let $E \in \mathcal{B}$. For $\varepsilon > 0$, by Proposition 2.10, there exists an open set E and a closed set F with $F \subset E \subset G$ such that $\mu(G \setminus F) < \varepsilon$. Since Gand $G \setminus F$ are open, λ and μ coincide on them, and one has

$$\mu(E) = \mu(G) - \mu(G \setminus E) \ge \mu(G) - \mu(G \setminus F) = \lambda(G) - \lambda(G \setminus F)$$
$$\ge \lambda(E) - \varepsilon.$$

By changing the position of μ and λ , one has

$$\lambda(E) - \varepsilon \le \mu(E) \le \lambda(E) + \varepsilon.$$

Since this holds for any $\varepsilon > 0$, one has $\mu(E) = \lambda(E)$.

(5) Let μ be a Borel measure on \mathbb{R}^n such that $\mu(K) < \infty$ for all compact K. Show that μ is the restriction of some Riesz measure on \mathcal{B} . Hint: Use Riesz representation theorem and Problem 4. This exercise gives a characterization of the Riesz measure on \mathbb{R}^n .

Solution: Let λ be the Riesz measure associated with the functional

$$\Lambda f = \int f d\mu, \quad \forall f \in C_c(X),$$

from the Riesz representation theorem. Let G be an open set. Then

$$\lambda(G) = \sup\{\Lambda f : f < G\}.$$

By Urysohns lemma, it follows that $\lambda(G) = \mu(G)$. Then apply Problem 4.

(6) Let μ be a Riesz measure on \mathbb{R}^n . Show that for every measurable function f, there exists a sequence of continuous function $\{f_n\}$ such that $f_n \to f$ almost everywhere.

Solution: As μ is finite on compact set, $\{x \in \mathbb{R}^n : |f(x)| < \infty, |x| \leq m\}$ is a μ finite measurable set, by theorem 2.12, let $f_m = f \cdot \chi_{\{x \in \mathbb{R}^n : |f(x)| < \infty, |x| \leq m\}}, \exists g_m$ continuous on \mathbb{R}^n s.t

$$\mu(\{x: f_m(x) \neq g_m(x)\}) \le \frac{1}{2^m}.$$

As $\sum_{m=1}^{\infty} \mu(\{x : f_m(x) \neq g_m(x)\}) < \infty$, by Borel-Cantelli Lemma, $\exists \mu$ null set N s.t.

$$\forall x \in \mathbb{R}^n \setminus N, \exists K, \forall m \ge K, f_m(x) = g_m(x).$$

 $\{g_m\}$ obviously converges to $f\chi_{\{x\in R^n: |f(x)|<\infty\}}$ m a.e.. Similarly, we obtain sequences of continuous function $\{h_m\}$ and $\{j_m\}$ by replacing f_m by m. $\chi_{\{x\in R^n:f(x)=\infty,|x|\leq m\}}$ and $-m\cdot\chi_{\{x\in R^n:f(x)=-\infty,|x|\leq m\}},$ we have

$$g_m + h_m + j_m \rightarrow fa.e.$$

(7) A step function on \mathbb{R} is a simple function s where $s^{-1}(a)$ is either empty or an interval for every $a \in \mathbb{R}$. Show that for every Lebesgue integrable function f on \mathbb{R} , there exists a sequence of step functions $\{s_j\}$ such that

$$\lim_{j \to \infty} \int |s_j(x) - f(x)| d\mathcal{L}^1(x) = 0.$$

Hint: Approximate f by simple functions (see Ex 2) and then apply Lusin's theorem.

Solution: Without loss of generality, we may assume f is non-negative, it suffices to show for all $\varepsilon > 0$, there exists step function ψ s.t.

$$\int |\psi(x) - f(x)| d\mathcal{L}^1(x) < \varepsilon.$$

There exists non-negative simple function s(x) of compact support s.t. $s(x) \leq f(x)$ and

$$\int |s(x) - f(x)| d\mathcal{L}^1(x) < \frac{\varepsilon}{3}.$$

Let $M = \max_{x \in \mathbb{R}} |s(x)|$, apply Lusin's theorem to s(x), we have a continuous g of compact support, for instance $\subseteq [a, b]$ s.t.

$$\mathcal{L}^1(\{s \neq g\}) < \frac{\varepsilon}{6M+1}$$

and

$$\sup_{x \in \mathbb{R}} |g(x)| \le M.$$

Therefore

$$\int |g(x) - s(x)| d\mathcal{L}^1(x) = \int_{\{s \neq g\}} |g(x) - s(x)| d\mathcal{L}^1(x) < \frac{\varepsilon}{3}.$$

The function g is obviously Riemann integrable over [a, b] and the Riemann integral of g is the same as its Lebesgue integral, so \exists step function $\psi \leq g$ s.t

$$\int |g(x) - \psi(x)| d\mathcal{L}^1(x) < \frac{\varepsilon}{3},$$

and

$$\int |f(x) - \psi(x)| d\mathcal{L}^{1}(x) \leq \int f(x) - s(x) + |g(x) - s(x)| + g(x) - \psi(x) d\mathcal{L}^{1}(x)$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$