MATH5011 Suggested Solution to Exercise 2

(1) Let f be a non-negative measurable function.
(a) Prove Markov's inequality:

$$
\mu\{x \in X: f(x) \geq M\} \leq \frac{1}{M} \int_{X} f d \mu
$$

for all $M>0$.
(b) Deduce that every integrable function is finite a.e..
(c) Deduce that $f=0$ a.e. if f is integrable and $\int f=0$.

Solution:

(a) let $F=\{x: f(x)>M\}$, then by non-negativity of f , we have

$$
M \mu(F) \leq \int_{F} f d \mu \leq \int_{X} f d \mu
$$

and Markov's inequality follows.
(b) Let $E_{n}=\{x: f(x)>n\}$ and $E=\{x: f(x)=\infty\}$. Clearly we have E_{n} is descending and $\bigcap_{n=1}^{\infty} E_{n}=E$. So, $\forall n \in N$, by Markov's inequality, we
have $\mu\left(E_{1}\right) \leq \int_{X} f d \mu<\infty$ and

$$
\begin{aligned}
\mu(E) & =\lim _{n \rightarrow \infty} \mu\left(E_{n}\right) \\
& =\lim _{n \rightarrow \infty} \int_{E_{n}} d \mu \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{n} \int_{E_{n}} f d \mu \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{n} \int_{X} f d \mu \\
& =\int_{X} f d \mu \lim _{n \rightarrow \infty} \frac{1}{n} \\
& =0
\end{aligned}
$$

since $\int_{X} f d \mu$ is finite. Thus, f is finite a.e..
(c) Let $E_{n}=\left\{x: f(x) \geq \frac{1}{n}\right\}$ and $E=\{x: f(x)>0\}$. Then E_{n} ascends to E. We have

$$
\mu\left(E_{n}\right)=\int_{E_{n}} d \mu \leq n \int_{E_{n}} f d \mu=0, \forall n \in N
$$

Therefore,

$$
\mu(E)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=0
$$

(2) Let g be a measurable function in $[0, \infty]$. Show that

$$
m(E)=\int_{E} g d \mu
$$

defines a measure on \mathcal{M}. Moreover,

$$
\int_{X} f d m=\int_{X} f g d \mu, \quad \forall f \text { measurable in }[0, \infty]
$$

Solution: We readily check that
(1) $m(\emptyset)=0$;
(2) $m(E) \geq 0, \forall E \in M$;
(3) For mutually disjoint $A_{k} \in M$,

$$
m\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\int_{X} \sum_{k=1}^{\infty} \chi_{A_{k}} g d \mu=\sum_{k=1}^{\infty} \int \chi_{A_{k}} g d \mu=\sum_{k=1}^{\infty} m\left(A_{k}\right)
$$

by monotone convergence theorem, since $\sum_{k=1}^{n} \chi_{A_{k}} g \uparrow \sum_{k=1}^{\infty} \chi_{A_{k}} g$.

To prove the last assertion, consider the following cases:
(a) $f=\chi_{E}$ for some $E \in M$.

$$
\int_{X} f d m=\int_{E} d m=m(E)=\int_{E} g d \mu=\int_{X} \chi_{E} g d \mu=\int_{X} f g d \mu .
$$

(b) f is a non-negative simple function.

This follows from (a).
(c) f is a non-negative measurable function.

Pick a sequence $s_{n} \geq 0$ of simple functions such that $s_{n} \uparrow f$ pointwisely. Then $0 \leq s_{n} g \uparrow g$ pointwisely. From (b),

$$
\int_{X} s_{n} d m=\int_{X} s_{n} g d \mu
$$

Taking $n \rightarrow \infty$, by monotone convergence theorem, we have

$$
\int_{X} f d m=\int_{X} f g d \mu
$$

(3) Let $\left\{f_{k}\right\}$ be measurable in $[0, \infty]$ and $f_{k} \downarrow f$ a.e., f measurable and $\int f_{1} d \mu<$ ∞. Show that

$$
\lim _{k \rightarrow \infty} \int f_{k} d \mu=\int f d \mu
$$

What happens if $\int f_{1} d \mu=\infty$?
Solution: Without loss of generality, we may suppose $f_{k} \downarrow f$ pointwisely. (Otherwise, replace by X by $Y=X \backslash N$, such that $\mu(N)=0$ and $f_{k} \downarrow f$ on Y.) Then $0 \leq f_{1}-f_{k} \uparrow f_{1}-f$. By monotone convergence theorem,

$$
\lim _{k \rightarrow \infty} \int_{X}\left(f_{1}-f_{k}\right) d \mu=\int_{X}\left(f_{1}-f\right) d \mu
$$

Since $\int_{X} f_{1} d \mu<\infty$, we can cancel it from both sides to yield the result.
If $\int_{X} f_{1} d \mu=\infty$, the result does not hold. For example, one may take $X=R$, $f_{k}(x)=1 / k$ and $f=0$. Then

$$
\int_{X} f d \mu=0, \text { while } \int_{X} f_{k} d \mu=\infty, \forall k \in N
$$

(4) Let f be a measurable function. Show that there exists a sequence of simple functions $\left\{s_{j}\right\},\left|s_{1}\right| \leq\left|s_{2}\right| \leq\left|s_{3}\right| \leq \cdots$, and $s_{k}(x) \rightarrow f(x), \forall x \in X$.

Solution: Choose sequences of non-negative simple functions $s_{j}^{+} \uparrow f_{+}$and $s_{j}^{-} \uparrow f_{-}$. Put $s_{j}=s_{j}^{+} \chi_{\{x: f(x) \geq 0\}}-s_{j}^{-} \chi_{\{x: f(x)<0\}}$. Fix $x \in X$. If $f(x) \geq 0$ then $\left|s_{j}(x)\right|=s_{j}^{+}(x) \uparrow f_{+}$. If $f(x)<0$ then $\left|s_{j}(x)\right|=s_{j}^{-}(x) \uparrow f_{-}$. We also have

$$
s_{j}(x) \rightarrow f_{+} \chi_{\{x: f(x) \geq 0\}}(x)-f_{-} \chi_{\{x: f(x)<0\}}(x)=f(x), \quad \forall x \in X
$$

(5) Let $\mu(X)<\infty$ and f be integrable. Suppose that

$$
\frac{1}{\mu(E)} \int_{E} f d \mu \in[a, b], \forall E \in \mathcal{M}, \mu(E)>0
$$

for some $[a, b]$. Show that $f(x) \in[a, b]$ a.e..
Solution: Let $A=\{x: f(x)<a\}$ and $B=\{x: f(x)>b\}$. If $\mu(A)>0$,
then

$$
\frac{1}{\mu(A)} \int_{A} f d \mu<\frac{1}{\mu(A)} \int_{A} a d \mu=a,
$$

a contradiction. Thus, $\mu(A)=0$ and, similarly, $\mu(B)=0$. Hence, $f(x) \in$ $[a, b]$ a.e.
(6) Let f be Lebsegue integrable on $[a, b]$ which satisfies

$$
\int_{a}^{c} f d \mathcal{L}^{1}=0
$$

for every c. Show that f is equal to 0 a.e..
Solution: Using Problem 2, we can define two measures m_{+}, m_{-}on $[a, b]$ by

$$
m_{+}(E):=\int_{E} f_{+} d \mathcal{L}^{1}, \quad m_{-}(E):=\int_{E} f_{-} d \mathcal{L}^{1}
$$

Using $\int_{a}^{c} f d \mathcal{L}^{1}=m_{+}((a, c))-m_{-}((a, c))=0$, one sees that $m_{+}(I)=m_{-}(I)$, for every open interval $I \subset[a, b]$. Since every open set can be represented as a countable union of disjointed intervals, one has that $m_{+}(O)=m_{-}(O)$, for every open set $O \subset[a, b]$. Since Borel sets are generated by open sets, this holds for every Borel, and hence measurable sets E. This shows that

$$
\int_{E} f d \mathcal{L}^{1}=m_{+}(E)-m_{-}(E)=0 .
$$

Setting $E=\{x \in[a, b]: f(x) \geq=0\}$, one has $f_{+}=0$. Similarly $f_{-}=0$. Hence $f=0$ a.e.
(7) Let $f \geq 0$ be integrable and $\int f d \mu=c \in(0, \infty)$. Prove that

$$
\lim _{n \rightarrow \infty} \int n \log \left(1+\left(\frac{f}{n}\right)^{\alpha}\right) d \mu= \begin{cases}\infty, & \text { if } \alpha \in(0,1) \\ c, & \text { if } \alpha=1 \\ 0, & \text { if } 1<\alpha<\infty\end{cases}
$$

Solution: Let $g_{n}(x)=n \log \left(1+\left(\frac{f(x)}{n}\right)^{\alpha}\right)$. Since $\int f d \mu=c \in(0, \infty)$, we know that $\mu(\{x: f(x)=\infty\})=0$ and $\mu(\{x: f(x)>0\})>0$. Observe that

$$
\lim _{n \rightarrow \infty} g_{n}(x)= \begin{cases}\infty, & \text { on }\{x: f(x)>0\}, \text { if } \alpha<1 \\ f(x), & \text { a.e. } \mu, \text { if } \alpha=1 \\ 0, & \text { a.e. } \mu, \text { if } \alpha>1\end{cases}
$$

Moreover, if $\alpha \geq 1$, using the inequalities $1+x^{\alpha} \leq(1+x)^{\alpha}$ and $\log (1+x) \leq x$ for $x \geq 0$, we have

$$
g_{n} \leq n \log \left(1+\frac{f}{n}\right)^{\alpha} \leq n \alpha \cdot \frac{f}{n}=\alpha f \in L^{1}(\mu)
$$

- Suppose $\alpha \in(0,1)$. By Fatou's lemma,

$$
\underline{\lim _{n \rightarrow \infty}} \int g_{n} d \mu \geq \int \underline{\lim _{n \rightarrow \infty}} g_{n} d \mu=\infty
$$

Hence, $\lim _{n \rightarrow \infty} \int g_{n} d \mu=\infty$.

- Suppose $\alpha=1$. By Lebesgue dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int g_{n} d \mu=\int \lim _{n \rightarrow \infty} g_{n} d \mu=\int f d \mu=c
$$

- Suppose $1<\alpha<\infty$. By Lebesgue dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int g_{n} d \mu=\int \lim _{n \rightarrow \infty} g_{n} d \mu=0
$$

(8) Let f be a non-negative integrable function with respect to some μ and let $F_{k}=\{x: f(x) \geq k\}$ for $k \geq 1$. Show that $\sum_{k} \mu\left(F_{k}\right)<\infty$. Hint: Relate F_{k} to $E_{k}=\{x: k \leq f(x) \leq k+1\}$.

Solution: We can write $F_{k}=\bigcup_{n=k}^{\infty} E_{n}$, where $E_{k}=\{x: k \leq f(x)<k+1\}$
are pair-wise disjoint. Hence

$$
\mu\left(F_{k}\right)=\sum_{n=k}^{\infty} \mu\left(E_{n}\right)
$$

and one has, by changing the order of summations,

$$
\begin{aligned}
\sum_{k=1}^{\infty} \mu\left(F_{k}\right) & =\sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \mu\left(E_{n}\right) \sum_{n=1}^{\infty} \sum_{k=1}^{n} \mu\left(E_{n}\right)=\sum_{n=1}^{\infty} n \mu\left(E_{n}\right) \\
& \leq \sum_{n=1}^{\infty} \int_{E_{n}} f d \mu \leq f d \mu<\infty
\end{aligned}
$$

(9) Let $\mu(X)<\infty$ and $f_{k} \rightarrow f$ uniformly on X and each f_{k} is bounded. Prove that

$$
\lim _{k \rightarrow \infty} \int f_{k} d \mu=\int f d \mu
$$

Can $\mu(X)<\infty$ be removed?
Solution: We assume that $\mu(X)>0$. (Otherwise, the result is trivial.) Let $\varepsilon>0$ be given. Since $f_{k} \rightarrow f$ uniformly on X, there exists natural number N such that for all $k \geq N$ and for all $x \in X$, we have

$$
\left|f_{k}(x)-f(x)\right|<\frac{\varepsilon}{\mu(X)}
$$

So, for all $k \geq N$, we have

$$
\left|\int f_{k} d \mu-\int f d \mu\right| \leq \int\left|f_{k}-f\right| d \mu<\varepsilon
$$

The result follows.
If $\mu(X)=\infty$, the result no longer holds. One may take $X=R, f_{k}(x)=1 / k$, $f(x)=0$ and μ to be the Lebesgue measure. Then $f_{k} \rightarrow f$ uniformly on X
and each f_{k} is bounded,

$$
\int f d \mu=0, \text { while } \int f_{k} d \mu=\infty, \forall k
$$

(10) Give another proof of Borel-Cantelli lemma (in Ex.1) by using Corollary 1.12. (Hint: Study $g(x)=\sum_{j=1}^{\infty} \chi_{A_{j}}(x)$.)

Solution: Let $\left\{A_{k}\right\}$ be measurable, $A=\left\{x \in X: x \in A_{k}\right.$ for infinitely many $\left.k\right\}$ and suppose $\sum_{k=1}^{\infty} \mu\left(A_{k}\right)<\infty$. Write

$$
g(x)=\sum_{j=1}^{\infty} \chi_{A_{j}}(x)
$$

Then $x \in A$ if and only if $g(x)=\infty$. By Fatou's lemma,

$$
\int g d \mu \leq \sum_{j=1}^{\infty} \int \chi_{A_{j}} d \mu=\sum_{j=1}^{\infty} \mu\left(A_{j}\right)<\infty
$$

Now,

$$
\mu(A)=\frac{1}{n} \int_{A} n d \mu \leq \frac{1}{n} \int_{A} g d \mu \leq \frac{1}{n} \int g d \mu .
$$

Taking $n \rightarrow \infty$, we have $\mu(A)=0$.
(11) Give an example of a sequence $\left\{f_{k}\right\}$ on $[0,1], f_{k} \rightarrow f$ in L^{1} with respect to \mathcal{L}^{1} but it does not converge at any point in $[0,1]$.

Hint: Divide $[0,1]$ into $2^{k}, k \geq 1$, many subintervals of equal length and order them in a sequence. Let $I_{j}^{k}, j=1,2, \cdots, 2^{k}$, be these subintervals and consider the sequence composed of the characteristic functions of I_{j}^{k}.

Solution: Define f_{n} on $[0,1]$ as follows. Given $n \in N$, write $n=2^{k}+m$ where $k=k(n) \geq 0$ and $m=m(n) \in\left\{0,1, \ldots, 2^{k}-1\right\}$. Then

$$
f_{n}=\chi_{\left[m \cdot 2^{-k},(m+1) \cdot 2^{-k}\right]}
$$

is as required.
Clearly, $\int f_{n} d \mu=2^{-k(n)} \rightarrow 0$ as $n \rightarrow \infty$, so $f_{n} \rightarrow 0$ in $L^{1}(\mu)$.
On the other hand, since $f_{n}(x)=a_{n}$, the sequence $\left\{f_{n}(x)\right\}$ does not converge at $x \in[0,1]$ except those with expansion $0 . a_{1} a_{2} a_{3} \ldots$ where a_{n} 's become 0 after some digit. But there are countably many such x 's and we can redefine f_{n} at these points so that $\left\{f_{n}\right\}$ also diverges at them.
(12) Let f be a Riemann integrable function on $[a, b]$ and extend it to \mathbb{R} by setting it zero outside $[a, b]$.
(a) Show that f is Lebsegue measurable.
(b) Show that the Riemann integral of f is equal to $\int_{\mathbb{R}} f d \mathcal{L}^{1}$.
(c) Give an example of a sequence of Riemann integrable functions which is uniformly bounded on $[a, b]$ and converges pointwisely to some function which is not Riemann integrable.

Solution:

(a) We assume the result and notation in question 10 of exercise 1 , by the proof of 10 b), f is Riemann integrable on $[a, b]$ if and only if $\bar{R}(f)=\underline{R}(f)$. When this holds, $L=\bar{R}(f)=\underline{R}(f)$. Then for all natural number n, we may find partition of [a,b], $P_{n}=\left\{a=z_{0}<z_{1}<\ldots<z_{m_{n}}=b\right\}$ such that

$$
0 \leq \bar{R}\left(P_{n}, f\right)-\underline{R}\left(P_{n}, f\right) \leq \frac{1}{n}
$$

define two sequence of step function in the following way, for all x in $\left[z_{j}, z_{j+1}\right)$,

$$
\varphi_{n}(x)=\inf \left\{f(x): x \in\left[z_{j}, z_{j+1}\right]\right\}
$$

and

$$
\psi_{n}(x)=\sup \left\{f(x): x \in\left[z_{j}, z_{j+1}\right]\right\} .
$$

For all x in $[a, b]$

$$
h(x)=\sup \left\{\varphi_{n}(x): n \in N\right\}
$$

and

$$
g(x)=\inf \left\{\psi_{n}(x): n \in N\right\}
$$

h and g are obviously Lebesgue measurable, we also have $\varphi_{n}(x) \leq h \leq$ $f \leq g \leq \psi_{n}(x)$. For any natural number n,

$$
0 \leq \int_{a}^{b}(g-h) d \mathcal{L}^{1} \leq \int_{a}^{b}\left(\psi_{n}-\varphi_{n}\right) d \mathcal{L}^{1}=\bar{R}\left(P_{n}, f\right)-\underline{R}\left(P_{n}, f\right) \leq \frac{1}{n}
$$

so we have $h=f=g$ a.e. and f is Lebesgue measurable.
(b) By taking refinement with the partition $\left\{a=z_{0}<z_{1}=a+(b-a) / n<\right.$ $\left.. .<z_{j}=a+j(b-a) / n<.<z_{m_{n}}=b\right\}$ if necessary, we may assume the norm of partition P_{n} in (a) tend to 0 as $n \rightarrow 0$. As φ_{n} and ψ_{n} are integrable and $|f(x)| \leq\left|\varphi_{n}(x)\right|+\left|\psi_{n}(x)\right|$ for all x in $[a, b], f$ is Lebesgue integrable and

$$
\underline{R}\left(P_{n}, f\right)=\int_{a}^{b} \varphi_{n} d \mathcal{L}^{1} \leq \int_{a}^{b} f d \mathcal{L}^{1} \leq \int_{a}^{b} \psi_{n} d \mathcal{L}^{1}=\bar{R}\left(P_{n}, f\right)
$$

Using result in 10(b) of Ex. 1 and let n go to ∞, we have Riemann integral $=\int_{R} f d \mathcal{L}^{1}$.
(c) We consider the famous Dirichlet function g which is not Riemann integrable, $g(x)=1$ if x is rational and $\in[0,1], g(x)=0$ otherwise. Let $\left\{q_{n}: n \in N\right\}$ be an enumeration of all rational number in $[0,1]$ and define

$$
f_{n}=\sum_{i=1}^{n} \chi_{q_{i}}
$$

Then each f_{n} is obviously uniformly bounded Riemann integrable with zero integral and yet $\left\{f_{n}\right\}$ converges pointwisely to the Dirichlet function for all x in $[0,1]$.

