MATH5011 Real Analysis I

Exercise 1 Suggested Solution

Notations in the notes are used.
(1) Show that every open set in \mathbb{R} can be written as a countable union of mutually disjoint open intervals. Hint: First show that every point x in this open set is contained in a largest open interval I_{x}. Next, for any x, y, I_{x} and I_{y} either coincide and disjoint. Finally, argue there are at most countably many such intervals.

Solution:
Let V be open in R. Fix $\mathrm{x} \in V, \exists$ at least one open interval $I, \mathrm{x} \in I, I \subseteq V$. Let $I_{\alpha}=\left(a_{\alpha}, b_{\alpha}\right), \alpha \in \mathcal{A}$, be all intervals with this property. Let

$$
I_{x}=\left(a_{x}, b_{x}\right), a_{x}=\inf _{\alpha} a_{\alpha}, b_{x}=\sup _{\alpha} b_{\alpha} .
$$

satisfy $\mathrm{x} \in I_{x}, I_{x} \subseteq V$. It is obvious that $I_{x} \cap I_{y} \neq \phi \Rightarrow I_{x}=I_{y}$. So

$$
V=\bigcup_{x \in V} I_{x}
$$

As you can pick a rational number in each I_{x} and Q is countable,

$$
V=\bigcup_{x_{j} \in V} I_{x_{j}}
$$

(2) Let $\Psi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show that $\Psi(f, g)$ are measurable for any measurable functions f, g. This result contains Proposition 1.3 as a special case.

Solution:
Note that every open set $G \subseteq \mathbb{R}^{2}$ can be written as a countable union of set of the form $V_{1} \times V_{2}$ where V_{1}, V_{2} open in \mathbb{R}. (Think of $V_{1} \times V_{2}=(a, b) \times$ $(c, d), a, b, c, d \in Q)$.
Let $G \subseteq \mathbb{R}$ be open. Then $\Phi^{-1}(G)$ is open in \mathbb{R}^{2}, so

$$
\Phi^{-1}(G)=\bigcup_{n}\left(V_{n}^{1} \times V_{n}^{2}\right)
$$

Then

$$
h^{-1}\left(\Phi^{-1}\right)(G)=\bigcup_{n} h^{-1}\left(V_{n}^{1} \times V_{n}^{2}\right)=\bigcup_{n} f^{-1}\left(V_{n}^{1}\right) \cap g^{-1}\left(V_{n}^{2}\right)
$$

is measurable since f and g are measurable. Hence $h=(f, g)$.
(3) Show that $f: X \rightarrow \overline{\mathbb{R}}$ is measurable if and only if $f^{-1}([a, b])$ is measurable for all $a, b \in \overline{\mathbb{R}}$.

Solution:
By def $f: X \rightarrow \bar{R}$ is measurable if $f^{-1}(G)$ is measurable. $\forall G$ open in \bar{R}. Every open set G in \bar{R} can be written as acountable union of $(a, b),[-\infty, a)$, $(b, \infty], a, b \in R$. So $\mathrm{f} f$ is measurable iff $f^{-1}(a, b), f^{-1}[-\infty, a), f^{-1}(b, \infty]$ are measurable.
$\Rightarrow)$ Use

$$
\begin{gathered}
f^{-1}(a, b)=\bigcap_{n} f^{-1}\left(a-\frac{1}{n}, b+\frac{1}{n}\right) \\
f^{-1}[-\infty, a)=\bigcap_{n} f^{-1}\left[-\infty, a+\frac{1}{n}\right) \\
f^{-1}(b, \infty]=\bigcap_{n} f^{-1}\left(b-\frac{1}{n}, \infty\right]
\end{gathered}
$$

$\Leftarrow)$ Use

$$
\begin{gathered}
f^{-1}(a, b)=\bigcup_{n} f^{-1}\left[a-\frac{1}{n}, b+\frac{1}{n}\right] \\
f^{-1}[-\infty, a)=\bigcap_{n} f^{-1}\left[-\infty, a-\frac{1}{n}\right] \\
f^{-1}(b, \infty]=\bigcap_{n} f^{-1}\left[b+\frac{1}{n}, \infty\right] .
\end{gathered}
$$

(4) Let $f, g, f_{k}, k \geq 1$, be measurable functions from X to $\overline{\mathbb{R}}$.
(a) Show that $\{x: f(x)<g(x)\}$ and $\{x: f(x)=g(x)\}$ are measurable sets.
(b) Show that $\left\{x: \lim _{k \rightarrow \infty} f_{k}(x)\right.$ exists and is finite $\}$ is measurable.

Solution:
(a) Suffice to show $\{x: F(x)>0\}$ and $\{x: F(x)=0\}$ are measurable. If F is measurable, use

$$
\begin{gathered}
\{x: F(x)>0\}=F^{-1}(0, \infty] \\
\{x: F(x)=0\}=F^{-1}[0, \infty] \cap F^{-1}[-\infty, 0]
\end{gathered}
$$

(b) Since $g(x)=\limsup _{k \rightarrow \infty} f_{k}(x)$ and $\liminf _{k \rightarrow \infty} f_{k}(x)$ are measurable.

$$
\left\{x: \lim _{k \rightarrow \infty} f_{k}(x) \text { exists }\right\}=\left\{x: \liminf _{k \rightarrow \infty} f_{k}(x)=\limsup _{k \rightarrow \infty} f_{k}(x)\right\}
$$

On the other hand, the $\operatorname{set}\{x: g(x)<+\infty\}$ is also measurable, so is their intersection.
(5) There are two conditions (i) and (ii) in the definition of a measure μ on (X, \mathcal{M}). Show that (i) can be replaced by the "nontriviality condition": There exists some $E \in \mathcal{M}$ with $\mu(E)<\infty$.

Solution:

If μ is a measure satisfying the nontriviality condition and (ii), let $A_{1}=E$, $A_{i}=\phi$ for $i \geq 2$ in ii),

$$
\infty>\mu(E)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \geq \mu\left(A_{1}\right)+\mu\left(A_{2}\right)=\mu(E)+\mu(\phi)
$$

so $0 \geq \mu(\phi) \geq 0$. We have μ is a measure satisfying (i) and (ii).
if μ is a measure satisfying (i) and (ii), taking $E=\phi$, we have the nontriviality condition.
(6) Let $\left\{A_{k}\right\}$ be measurable and $\sum_{k=1}^{\infty} \mu\left(A_{k}\right)<\infty$ and

$$
A=\left\{x \in X: x \in A_{k} \text { for infinitely many } k\right\} .
$$

(a) Show that A is measurable.
(b) Show that $\mu(A)=0$.

This is Borel-Cantelli lemma, google for more.
Solution
(a) Note that

$$
A=\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} A_{k} .
$$

This is clearly measurable.
(b) Since $\sum_{k=1}^{\infty} \mu\left(A_{k}\right)<\infty$, we have $\sum_{k=n}^{\infty} \mu\left(A_{k}\right) \rightarrow 0$ as $n \rightarrow \infty$. For any $\mathrm{n} \in N$, we have

$$
A \subset \bigcup_{k \geq n} A_{k}
$$

and so

$$
\mu(A) \leq \sum_{k=n}^{\infty} \mu\left(A_{k}\right)
$$

.Taking $n \rightarrow \infty$, we have $\mu(A)=0$.
(7) Let T be a map from a measure space (X, \mathcal{M}, μ) onto a set Y. Let \mathcal{N} be the set of all subsets N of Y satisfying $T^{-1}(N) \in \mathcal{M}$. Show that the triple $(Y, \mathcal{N}, \lambda)$ where $\lambda(N)=\mu\left(T^{-1}(N)\right)$ is a measure space.

Solution:
First, we show \mathcal{N} is a σ-algebra in Y. This follows from the relations

$$
\begin{aligned}
T^{-1}(Y) & =X \\
T^{-1}(Y \backslash A) & =X \backslash T^{-1}(A), \\
T^{-1}\left(\bigcup_{n=1}^{\infty} A_{n}\right) & =\bigcup_{n=1}^{\infty} T^{-1}\left(A_{n}\right)
\end{aligned}
$$

for any $A, A_{n} \in \mathcal{N}$. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a disjoint countable collection of \mathcal{N}, then $\left\{T^{-1}\left(A_{n}\right)\right\}_{n=1}^{\infty}$ is a disjoint countable collection of \mathcal{M}, and

$$
\lambda\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\mu\left(T^{-1}\left(\bigcup_{n=1}^{\infty} A_{n}\right)\right)=\mu\left(\bigcup_{n=1}^{\infty} T^{-1}\left(A_{n}\right)\right)=\sum_{n=1}^{\infty} \mu\left(T^{-1}\left(A_{n}\right)\right)=\sum_{n=1}^{\infty} \lambda\left(A_{n}\right) .
$$

This proves the countably additivity of λ, and hence the triple $(Y, \mathcal{N}, \lambda)$ where $\lambda(N)=\mu\left(T^{-1}(N)\right)$ is a measure space.
(8) In Theorem 1.6 we approximate a non-negative measurable function f by an increasing sequence of simple functions from below. Can we approximate f by a decreasing sequence of simple functions from above? A necessary condition is that f must be bounded in X, that is, $f(x) \leq M, \forall x \in X$ for some M. Under this condition, show that this is possible.

Solution:
$f(X) \subseteq[0, M]$, we can divide $[0, M]$ into subintervals

$$
I_{j}^{k}=\left[\frac{j M}{2^{k}}, \frac{(j+1) M}{2^{k}}\right)
$$

for $\mathrm{j}=0,1,2 \ldots .2^{k}-2$

$$
I_{2^{k}-1}^{k}=\left[\frac{\left(2^{k}-1\right) M}{2^{k}}, M\right]
$$

define $\varphi_{k}(t)=\frac{(j+1) M}{2^{k}}$ if $\mathrm{t} \in I_{j}$. As $I_{2 j}^{k+1} \cup I_{2 j+1}^{k+1} \subseteq I_{j}^{k}, \varphi_{k}(t)$ is a decreasing sequence(so is $\left.\varphi_{k}(f(x))\right)$ and $\varphi_{k}(f(x))$ is simple function satisfying the following inequality :

$$
\varphi_{k}(f(x)) \geq f(x) \geq \varphi_{k}(f(x))-\frac{M}{2^{k}}
$$

Hence $\varphi_{k}(f(x))$ is a deceasing sequence of simple functions which converges uniformly to f over X .
(9) A measure space is complete if every subset of a null set, that is, a set of measure zero, is measurable. This problem shows that every measure space can be extended to become a complete measure. It will be used later.

Let (X, \mathcal{M}, μ) be a measure space. Let $\widetilde{\mathcal{M}}$ contain all sets E such that there exist $A, B \in \mathcal{M}, A \subset E \subset B, \mu(B \backslash A)=0$. Show that $\widetilde{\mathcal{M}}$ is a σ-algebra containing \mathcal{M} and if we set $\widetilde{\mu}(E)=\mu(A)$, then $(X, \widetilde{\mathcal{M}}, \widetilde{\mu})$ is a complete measure space.
Solution:
We see that $\widetilde{\mathcal{M}}$ contains \mathcal{M} by taking $E=A=B$ for any $E \in \mathcal{M}$. Suppose $E_{i} \in \widetilde{\mathcal{M}}, B_{i} \subseteq E_{i} \subseteq A_{i}$ where $B_{i}, A_{i} \in \mathcal{M}$ and $\mu\left(A_{i} \backslash B_{i}\right)=0$, then

$$
\bigcap_{i=1}^{\infty} B_{i} \subseteq \bigcap_{i=1}^{\infty} E_{i} \subseteq \bigcap_{i=1}^{\infty} A_{i}
$$

and

$$
\mu\left(\bigcap_{i=1}^{\infty} A_{i} \backslash \bigcap_{i=1}^{\infty} B_{i}\right) \leq \mu\left(\bigcup_{i=1}^{\infty} A_{i} \backslash B_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i} \backslash B_{i}\right)=0
$$

We have $\bigcap_{i=1}^{\infty} E_{i}$ is in $\widetilde{\mathcal{M}}$. If $A \supseteq E \supseteq B$, then

$$
X \backslash A \subseteq X \backslash E \subseteq X \backslash B
$$

and

$$
\mu((X \backslash B) \backslash(X \backslash A))=\mu(A \backslash B)
$$

Hence $X \backslash E$ is in $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{M}}$ is a σ algebra. We check that $\widetilde{\mu}$ is a measure on \widetilde{M}. Obviously $\widetilde{\mu}(\phi)=0$. Let E_{i} be mutually disjoint $\widetilde{\mu}$ measurable set, $\exists B_{i}, A_{i} \mu$ measurable s.t

$$
A_{i} \subseteq E_{i} \subseteq B_{i}
$$

and

$$
\mu\left(B_{i} \backslash A_{i}\right)=0
$$

Using above argument, we have $\mu\left(\bigcup_{i=1}^{\infty} B_{i} \backslash \bigcup_{i=1}^{\infty} A_{i}\right)=0$, And A_{i} are mutually disjoint,

$$
\widetilde{\mu}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)=\sum_{i=1}^{\infty} \widetilde{\mu}\left(E_{i}\right) .
$$

So $\widetilde{\mu}$ is a measure on \widetilde{M}.
Finally, we check that $\widetilde{\mu}$ is a complete measure, let E be a $\widetilde{\mu}$ measurable and null set, for all subset $C \subseteq E$, we have $\exists A, B \in \mathcal{M}$ s.t. $A \subseteq E \subseteq B$ and $\mu(A)=\mu(B)=0$. Therefore

$$
\phi \subseteq C \subseteq B
$$

and

$$
\mu(B)=0 .
$$

We have $C \in \widetilde{\mathcal{M}}$.
(10) Here we review Riemann integral. Let f be a bounded function defined on $[a, b], a, b \in \mathbb{R}$. Given any partition $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ on [a,b] and tags $z_{j} \in\left[x_{j}, x_{j+1}\right]$, there corresponds a Riemann sum of f given by $R(f, P, \mathbf{z})=\sum_{j=0}^{n-1} f\left(z_{j}\right)\left(x_{j+1}-x_{j}\right)$. The function f is called Riemann integrable with integral L if for every $\varepsilon>0$ there exists some δ such that

$$
|R(f, P, \mathbf{z})-L|<\varepsilon
$$

whenever $\|P\|<\delta$ and \mathbf{z} is any tag on P. (Here $\|P\|=\max _{j=0}^{n-1}\left|x_{j+1}-x_{j}\right|$ is the length of the partition.) Show that
(a) For any partition P, define its Darboux upper and lower sums by

$$
\bar{R}(f, P)=\sum_{j} \sup \left\{f(x): x \in\left[x_{j}, x_{j+1}\right]\right\}\left(x_{j+1}-x_{j}\right),
$$

and

$$
\underline{R}(f, P)=\sum_{j} \inf \left\{f(x): x \in\left[x_{j}, x_{j+1}\right]\right\}\left(x_{j+1}-x_{j}\right)
$$

respectively. Show that for any sequence of partitions $\left\{P_{n}\right\}$ satisfying $\left\|P_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty, \lim _{n \rightarrow \infty} \bar{R}\left(f, P_{n}\right)$ and $\lim _{n \rightarrow \infty} \underline{R}\left(f, P_{n}\right)$ exist.
(b) $\left\{P_{n}\right\}$ as above. Show that f is Riemann integrable if and only if

$$
\lim _{n \rightarrow \infty} \bar{R}\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} \underline{R}\left(f, P_{n}\right)=L
$$

(c) A set E in $[a, b]$ is called of measure zero if for every $\varepsilon>0$, there exists a countable subintervals J_{n} satisfying $\sum_{n}\left|J_{n}\right|<\varepsilon$ such that $E \subset \bigcup_{n} J_{n}$. Prove Lebsegue's theorem which asserts that f is Riemann integrable if and only if the set consisting of all discontinuity points of f is a set of
measure zero. Google for help if necessary.

Solution:
(a) It suffices to show: For every $\varepsilon>0$, there exists some δ such that

$$
0 \leq \bar{R}(f, P)-\bar{R}(f)<\varepsilon
$$

and

$$
0 \leq \underline{R}(f)-\underline{R}(f, P)<\varepsilon
$$

for any partition $P,\|P\|<\delta$, where

$$
\bar{R}(f)=\inf _{P} \bar{R}(f, P)
$$

and

$$
\underline{R}(f)=\sup _{P} \underline{R}(f, P) .
$$

If it is true, then $\lim _{n \rightarrow \infty} \bar{R}\left(f, P_{n}\right)$ and $\lim _{n \rightarrow \infty} \underline{R}\left(f, P_{n}\right)$ exist and equal to $\bar{R}(f)$ and $\underline{R}(f)$ respectively.
Given $\varepsilon>0$, there exists a partition Q such that

$$
\bar{R}(f)+\varepsilon / 2>\bar{R}(f, Q)
$$

Let m be the number of partition points of Q (excluding the endpoints). Consider any partition P and let R be the partition by putting together P and Q. Note that the number of subintervals in P which contain some partition points of Q in its interior must be less than or equal to m. Denote the indices of the collection of these subintervals in P by J.

We have

$$
0 \leq \bar{R}(f, P)-\bar{R}(f, R) \leq \sum_{j \in J} 2 M \Delta x_{j} \leq 2 M \times m\|P\|,
$$

where $M=\sup _{[a, b]}|f|$, because the contributions of $\bar{R}(f, P)$ and $\bar{R}(f, Q)$ from the subintervals not in J cancel out. Hence, by the fact that R is a refinement of Q ,

$$
\bar{R}(f)+\varepsilon / 2>\bar{R}(f, Q) \geq \bar{R}(f, R) \geq \bar{R}(f, P)-2 M m\|P\|
$$

i.e.,

$$
0 \leq \bar{R}(f, P)-\bar{R}(f)<\varepsilon / 2+2 M m\|P\| .
$$

Now, we choose

$$
\delta<\frac{\varepsilon}{1+4 M m}
$$

Then for $P,\|P\|<\delta$,

$$
0 \leq \bar{R}(f, P)-\bar{R}(f)<\varepsilon
$$

Similarly, one can prove the second inequality.
(b) With the result in part a, it suffices to prove the following result: Let f be bounded on $[a, b]$. Then f is Riemann integrable on $[a, b]$ if and only if $\bar{R}(f)=\underline{R}(f)$. When this holds, $L=\bar{R}(f)=\underline{R}(f)$.

According to the definition of integrability, when f is integrable, there exists some $L \in \mathbb{R}$ so that for any given $\varepsilon>0$, there is a $\delta>0$ such that for all partitions P with $\|P\|<\delta$,

$$
|R(f, P, z)-L|<\varepsilon / 2
$$

holds for any tags z. Let $\left(P_{1}, z_{1}\right)$ be another tagged partition. By the
triangle inequality we have
$\left|R(f, P, z)-R\left(f, P_{1}, z_{1}\right)\right| \leq|R(f, P, z)-L|+\left|R\left(f, P_{1}, z_{1}\right)-L\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$.

Since the tags are arbitrary, it implies

$$
\bar{R}(f, P)-\underline{R}(f, P) \leq \varepsilon .
$$

As a result,

$$
0 \leq \bar{R}(f)-\underline{R}(f) \leq \bar{R}(f, P)-\underline{R}(f, P) \leq \varepsilon
$$

Note that the first inequality comes from the definition of the upper/lower Riemann integrals. Since $\varepsilon>0$ is arbitrary, $\bar{R}(f)=\underline{R}(f)$.

Conversely, using $\bar{R}(f)=\underline{R}(f)$ in part a, we know that for $\varepsilon>0$, there exists a δ such that

$$
0 \leq \bar{R}(f, P)-\underline{R}(f, P)<\varepsilon,
$$

for all partitions $P,\|P\|<\delta$. We have

$$
\begin{aligned}
R(f, P, z)-\underline{R}(f) & \leq \bar{R}(f, P)-\underline{R}(f) \\
& \leq \bar{R}(f, P)-\underline{R}(f, P) \\
& <\varepsilon
\end{aligned}
$$

and similarly,

$$
\bar{R}(f)-R(f, P, z) \leq \bar{R}(f, P)-\underline{R}(f, P)<\varepsilon .
$$

As $\bar{R}(f)=\underline{R}(f)$, combining these two inequalities yields

$$
|R(f, P, z)-\underline{R}(f)|<\varepsilon
$$

for all $P,\|P\|<\delta$, so f is integrable, where $L=\underline{R}(f)$.
(c) For any bounded f on $[a, b]$ and $x \in[a, b]$, its oscillation at x is defined by

$$
\begin{aligned}
\omega(f, x) & =\inf _{\delta}\{(\sup f(y)-\inf f(y)): y \in(x-\delta, x+\delta) \cap[a, b]\} \\
& =\lim _{\delta \rightarrow 0^{+}}\{(\sup f(y)-\inf f(y)): y \in(x-\delta, x+\delta) \cap[a, b]\} .
\end{aligned}
$$

It is clear that $\omega(f, x)=0$ if and only if f is continuous at x. The set of discontinuity of f, D, can be written as $D=\bigcup_{k=1}^{\infty} O(k)$, where $O(k)=$ $\{x \in[a, b]: \omega(f, x) \geq 1 / k\}$. Suppose that f is Riemann integrable on $[a, b]$. It suffices to show that each $O(k)$ is of measure zero. Given $\varepsilon>0$, by Integrability of f, we can find a partition P such that

$$
\bar{R}(f, P)-\underline{R}(f, P)<\varepsilon / 2 k .
$$

Let J be the index set of those subintervals of P which contains some elements of $O(k)$ in their interiors. Then

$$
\begin{aligned}
\frac{1}{k} \sum_{j \in J}\left|I_{j}\right| & \leq \sum_{j \in J}\left(\sup _{I_{j}} f-\inf _{I_{j}} f\right) \Delta x_{j} \\
& \leq \sum_{j=1}^{n}\left(\sup _{I_{j}} f-\inf _{I_{j}} f\right) \Delta x_{j} \\
& =\bar{R}(f, P)-\underline{R}(f, P) \\
& <\varepsilon / 2 k .
\end{aligned}
$$

Therefore

$$
\sum_{j \in J}\left|I_{j}\right|<\varepsilon / 2 .
$$

Now, the only possibility that an element of $O(k)$ is not contained by one of these I_{j} is it being a partition point. Since there are finitely many partition points, say N, we can find some open intervals $I_{1}^{\prime}, \ldots, I_{N}^{\prime}$ containing these partition points which satisfy

$$
\sum\left|I_{i}^{\prime}\right|<\varepsilon / 2 .
$$

So $\left\{I_{j}\right\}$ and $\left\{I_{i}^{\prime}\right\}$ together form a covering of $O(k)$ and its total length is strictly less than ε. We conclude that $O(k)$ is of measure zero.

Conversely, given $\varepsilon>0$, fix a large k such that $\frac{1}{k}<\varepsilon$. Now the set $O(k)$ is of measure zero, we can find a sequence of open intervals $\left\{I_{j}\right\}$ satisfying

$$
\begin{aligned}
& O(k) \subseteq \bigcup_{j=1}^{\infty} I_{j} \\
& \sum_{j=1}^{\infty}\left|I_{i_{j}}\right|<\varepsilon
\end{aligned}
$$

One can show that $O(k)$ is closed and bounded, hence it is compact. As a result, we can find $I_{i_{1}}, \ldots, I_{i_{N}}$ from $\left\{I_{j}\right\}$ so that

$$
\begin{gathered}
O(k) \subseteq I_{i_{1}} \cup \ldots \cup I_{i_{N}} \\
\sum_{j=1}^{N}\left|I_{j}\right|<\varepsilon
\end{gathered}
$$

Without loss of generality we may assume that these open intervals are mutually disjoint since, whenever two intervals have nonempty intersection, we can put them together to form a larger open interval. Observe that $[a, b] \backslash\left(I_{i_{1}} \cup \cdots \cup I_{i_{N}}\right)$ is a finite disjoint union of closed bounded
intervals, call them $V_{i}^{\prime} s, i \in A$. We will show that for each $i \in A$, one can find a partition on each $V_{i}=\left[v_{i-1}, v_{i}\right]$ such that the oscillation of f on each subinterval in this partition is less than $1 / k$.

Fix $i \in A$. For each $x \in V_{i}$, we have

$$
\omega(f, x)<\frac{1}{k}
$$

By the definition of $\omega(f, x)$, one can find some $\delta_{x}>0$ such that

$$
\sup \left\{f(y): y \in B\left(x, \delta_{x}\right) \cap[a, b]\right\}-\inf \left\{f(z): z \in B\left(x, \delta_{x}\right) \cap[a, b]\right\}<\frac{1}{k}
$$

where $B(y, \beta)=(y-\beta, y+\beta)$. Note that $V_{i} \subseteq \bigcup_{x \in V_{i}} B\left(x, \delta_{x}\right)$. Since V_{i} is closed and bounded, it is compact. Hence, there exist $x_{l_{1}}, \ldots, x_{l_{M}} \in V_{i}$ such that $V_{i} \subseteq \bigcup_{j=1}^{M} B\left(x_{i_{j}}, \delta_{x_{l_{j}}}\right)$. By replacing the left end point of $B\left(x_{i_{j}}, \delta_{x_{l_{j}}}\right)$ with v_{i-1} if $x_{l_{j}}-\delta_{x_{l_{j}}}<v_{i-1}$, and replacing the right end point of $B\left(x_{i_{j}}, \delta_{x_{l_{j}}}\right)$ with v_{i} if $x_{l_{j}}+\delta_{x_{l_{j}}}>v_{i}$, one can list out the endpoints of $\left\{B\left(x_{l_{j}}, \delta_{l_{j}}\right)\right\}_{j=1}^{M}$ and use them to form a partition S_{i} of V_{i}. It can be easily seen that each subinterval in S_{i} is covered by some $B\left(x_{l_{j}}, \delta_{x_{l_{j}}}\right)$, which implies that the oscillation of f in each subinterval is less than $1 / k$. So, S_{i} is the partition that we want.

The partitions S_{i} 's and the endpoints of $I_{i_{1}}, \ldots, I_{i_{N}}$ form a partition P of $[a, b]$. We have

$$
\begin{aligned}
\bar{R}(f, P)-\underline{R}(f, P) & =\sum_{I_{i_{j}}}\left(M_{j}-m_{j}\right) \Delta x_{j}+\sum\left(M_{j}-m_{j}\right) \Delta x_{j} \\
& \leq 2 M \sum_{j=1}^{N}\left|I_{i_{j}}\right|+\frac{1}{k} \sum \Delta x_{j} \\
& \leq 2 M \varepsilon+\varepsilon(b-a) \\
& =[2 M+(b-a)] \varepsilon
\end{aligned}
$$

where $M=\sup _{[a, b]}|f|$ and the second summation is over all subintervals in $V_{i}, i \in A$. Hence f is integrable on $[a, b]$.

