MATH5011 Real Analysis I

Exercise 1 Suggested Solution

Notations in the notes are used.

(1) Show that every open set in \mathbb{R} can be written as a countable union of mutually disjoint open intervals. Hint: First show that every point x in this open set is contained in a largest open interval I_x . Next, for any x, y, I_x and I_y either coincide and disjoint. Finally, argue there are at most countably many such intervals.

Solution:

Let V be open in R. Fix $x \in V$, \exists at least one open interval I, $x \in I$, $I \subseteq V$. Let $I_{\alpha} = (a_{\alpha}, b_{\alpha}), \ \alpha \in \mathcal{A}$, be all intervals with this property. Let

$$I_x = (a_x, b_x), a_x = \inf_{\alpha} a_{\alpha}, b_x = \sup_{\alpha} b_{\alpha}.$$

satisfy $x \in I_x$, $I_x \subseteq V$. It is obvious that $I_x \cap I_y \neq \phi \Rightarrow I_x = I_y$. So

$$V = \bigcup_{x \in V} I_x.$$

As you can pick a rational number in each I_x and Q is countable,

$$V = \bigcup_{x_j \in V} I_{x_j}.$$

(2) Let $\Psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous. Show that $\Psi(f, g)$ are measurable for any measurable functions f, g. This result contains Proposition 1.3 as a special case.

Solution:

Note that every open set $G \subseteq \mathbb{R}^2$ can be written as a countable union of set of the form $V_1 \times V_2$ where V_1, V_2 open in \mathbb{R} . (Think of $V_1 \times V_2 = (a, b) \times (c, d), a, b, c, d \in Q$).

Let $G \subseteq \mathbb{R}$ be open. Then $\Phi^{-1}(G)$ is open in \mathbb{R}^2 , so

$$\Phi^{-1}(G) = \bigcup_{n} (V_n^1 \times V_n^2),$$

Then

$$h^{-1}(\Phi^{-1})(G) = \bigcup_{n} h^{-1}(V_n^1 \times V_n^2) = \bigcup_{n} f^{-1}(V_n^1) \cap g^{-1}(V_n^2)$$

is measurable since f and g are measurable. Hence h=(f,g).

(3) Show that $f: X \to \overline{\mathbb{R}}$ is measurable if and only if $f^{-1}([a,b])$ is measurable for all $a,b \in \overline{\mathbb{R}}$.

Solution:

By def $f: X \to \overline{R}$ is measurable if $f^{-1}(G)$ is measurable. $\forall G$ open in \overline{R} . Every open set G in \overline{R} can be written as accountable union of $(a,b), [-\infty,a), (b,\infty], a,b \in R$. So ff is measurable iff $f^{-1}(a,b), f^{-1}[-\infty,a), f^{-1}(b,\infty]$ are measurable.

 \Rightarrow) Use

$$f^{-1}(a,b) = \bigcap_{n} f^{-1}(a - \frac{1}{n}, b + \frac{1}{n})$$
$$f^{-1}[-\infty, a) = \bigcap_{n} f^{-1}[-\infty, a + \frac{1}{n})$$
$$f^{-1}(b, \infty) = \bigcap_{n} f^{-1}(b - \frac{1}{n}, \infty)$$

⇐) Use

$$f^{-1}(a,b) = \bigcup_{n} f^{-1}[a - \frac{1}{n}, b + \frac{1}{n}]$$
$$f^{-1}[-\infty, a) = \bigcap_{n} f^{-1}[-\infty, a - \frac{1}{n}]$$
$$f^{-1}(b, \infty) = \bigcap_{n} f^{-1}[b + \frac{1}{n}, \infty].$$

- (4) Let $f, g, f_k, k \geq 1$, be measurable functions from X to $\overline{\mathbb{R}}$.
 - (a) Show that $\{x : f(x) < g(x)\}\$ and $\{x : f(x) = g(x)\}\$ are measurable sets.
 - (b) Show that $\{x : \lim_{k \to \infty} f_k(x) \text{ exists and is finite}\}\$ is measurable.

Solution:

(a) Suffice to show $\{x: F(x) > 0\}$ and $\{x: F(x) = 0\}$ are measurable. If F is measurable, use

$${x: F(x) > 0} = F^{-1}(0, \infty]$$

$${x: F(x) = 0} = F^{-1}[0, \infty] \cap F^{-1}[-\infty, 0]$$

(b) Since $g(x) = \limsup_{k \to \infty} f_k(x)$ and $\liminf_{k \to \infty} f_k(x)$ are measurable.

$$\{x: \lim_{k \to \infty} f_k(x) \text{ exists }\} = \{x: \liminf_{k \to \infty} f_k(x) = \limsup_{k \to \infty} f_k(x)\}$$

On the other hand, the set $\{x: g(x) < +\infty\}$ is also measurable, so is their intersection.

(5) There are two conditions (i) and (ii) in the definition of a measure μ on (X, \mathcal{M}) . Show that (i) can be replaced by the "nontriviality condition": There exists some $E \in \mathcal{M}$ with $\mu(E) < \infty$. Solution:

If μ is a measure satisfying the nontriviality condition and (ii), let $A_1 = E$, $A_i = \phi$ for $i \geq 2$ in ii),

$$\infty > \mu(E) = \sum_{i=1}^{\infty} \mu(A_i) \ge \mu(A_1) + \mu(A_2) = \mu(E) + \mu(\phi)$$

so $0 \ge \mu(\phi) \ge 0$. We have μ is a measure satisfying (i) and (ii).

if μ is a measure satisfying (i) and (ii), taking $E = \phi$, we have the nontriviality condition.

(6) Let $\{A_k\}$ be measurable and $\sum_{k=1}^{\infty} \mu(A_k) < \infty$ and

$$A = \{x \in X : x \in A_k \text{ for infinitely many } k\}.$$

- (a) Show that A is measurable.
- (b) Show that $\mu(A) = 0$.

This is Borel-Cantelli lemma, google for more.

Solution

(a) Note that

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} A_k.$$

This is clearly measurable.

(b) Since $\sum_{k=1}^{\infty} \mu(A_k) < \infty$, we have $\sum_{k=n}^{\infty} \mu(A_k) \to 0$ as $n \to \infty$. For any $n \in N$, we have

$$A \subset \bigcup_{k \ge n} A_k$$

and so

$$\mu(A) \le \sum_{k=n}^{\infty} \mu(A_k)$$

. Taking $n \to \infty$, we have $\mu(A) = 0$.

(7) Let T be a map from a measure space (X, \mathcal{M}, μ) onto a set Y. Let \mathcal{N} be the set of all subsets N of Y satisfying $T^{-1}(N) \in \mathcal{M}$. Show that the triple $(Y, \mathcal{N}, \lambda)$ where $\lambda(N) = \mu(T^{-1}(N))$ is a measure space.

Solution:

First, we show \mathcal{N} is a σ -algebra in Y. This follows from the relations

$$T^{-1}(Y) = X,$$

$$T^{-1}(Y \setminus A) = X \setminus T^{-1}(A),$$

$$T^{-1}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} T^{-1}(A_n),$$

for any $A, A_n \in \mathcal{N}$. Let $\{A_n\}_{n=1}^{\infty}$ be a disjoint countable collection of \mathcal{N} , then $\{T^{-1}(A_n)\}_{n=1}^{\infty}$ is a disjoint countable collection of \mathcal{M} , and

$$\lambda(\bigcup_{n=1}^{\infty} A_n) = \mu(T^{-1}(\bigcup_{n=1}^{\infty} A_n)) = \mu(\bigcup_{n=1}^{\infty} T^{-1}(A_n)) = \sum_{n=1}^{\infty} \mu(T^{-1}(A_n)) = \sum_{n=1}^{\infty} \lambda(A_n).$$

This proves the countably additivity of λ , and hence the triple $(Y, \mathcal{N}, \lambda)$ where $\lambda(N) = \mu(T^{-1}(N))$ is a measure space.

(8) In Theorem 1.6 we approximate a non-negative measurable function f by an increasing sequence of simple functions from below. Can we approximate f by a decreasing sequence of simple functions from above? A necessary condition is that f must be bounded in X, that is, $f(x) \leq M$, $\forall x \in X$ for some M. Under this condition, show that this is possible.

Solution:

 $f(X) \subseteq [0, M]$, we can divide [0, M] into subintervals

$$I_j^k = \left[\frac{jM}{2^k}, \frac{(j+1)M}{2^k}\right),$$

for j=0,1,2....2^k - 2
$$I_{2^k-1}^k = \big[\frac{(2^k-1)M}{2^k}, M\big],$$

define $\varphi_k(t) = \frac{(j+1)M}{2^k}$ if $t \in I_j$. As $I_{2j}^{k+1} \cup I_{2j+1}^{k+1} \subseteq I_j^k$, $\varphi_k(t)$ is a decreasing sequence(so is $\varphi_k(f(x))$) and $\varphi_k(f(x))$ is simple function satisfying the following inequality:

$$\varphi_k(f(x)) \ge f(x) \ge \varphi_k(f(x)) - \frac{M}{2^k}.$$

Hence $\varphi_k(f(x))$ is a deceasing sequence of simple functions which converges uniformly to f over X.

(9) A measure space is *complete* if every subset of a *null set*, that is, a set of measure zero, is measurable. This problem shows that every measure space can be extended to become a complete measure. It will be used later.

Let (X, \mathcal{M}, μ) be a measure space. Let $\widetilde{\mathcal{M}}$ contain all sets E such that there exist $A, B \in \mathcal{M}$, $A \subset E \subset B$, $\mu(B \backslash A) = 0$. Show that $\widetilde{\mathcal{M}}$ is a σ -algebra containing \mathcal{M} and if we set $\widetilde{\mu}(E) = \mu(A)$, then $(X, \widetilde{\mathcal{M}}, \widetilde{\mu})$ is a complete measure space.

Solution:

We see that $\widetilde{\mathcal{M}}$ contains \mathcal{M} by taking E = A = B for any $E \in \mathcal{M}$. Suppose $E_i \in \widetilde{\mathcal{M}}$, $B_i \subseteq E_i \subseteq A_i$ where $B_i, A_i \in \mathcal{M}$ and $\mu(A_i \backslash B_i) = 0$, then

$$\bigcap_{i=1}^{\infty} B_i \subseteq \bigcap_{i=1}^{\infty} E_i \subseteq \bigcap_{i=1}^{\infty} A_i$$

and

$$\mu(\bigcap_{i=1}^{\infty} A_i \setminus \bigcap_{i=1}^{\infty} B_i) \le \mu(\bigcup_{i=1}^{\infty} A_i \setminus B_i) \le \sum_{i=1}^{\infty} \mu(A_i \setminus B_i) = 0.$$

We have $\bigcap_{i=1}^{\infty} E_i$ is in $\widetilde{\mathcal{M}}$. If $A \supseteq E \supseteq B$, then

$$X \backslash A \subseteq X \backslash E \subseteq X \backslash B$$

and

$$\mu((X\backslash B)\backslash (X\backslash A)) = \mu(A\backslash B).$$

Hence $X \setminus E$ is in $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{M}}$ is a σ algebra. We check that $\widetilde{\mu}$ is a measure on \widetilde{M} . Obviously $\widetilde{\mu}(\phi) = 0$. Let E_i be mutually disjoint $\widetilde{\mu}$ measurable set, $\exists B_i, A_i \ \mu$ measurable s.t

$$A_i \subseteq E_i \subseteq B_i$$

and

$$\mu(B_i \setminus A_i) = 0.$$

Using above argument, we have $\mu(\bigcup_{i=1}^{\infty} B_i \setminus \bigcup_{i=1}^{\infty} A_i) = 0$, And A_i are mutually disjoint,

$$\widetilde{\mu}(\bigcup_{i=1}^{\infty} E_i) = \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \widetilde{\mu}(E_i).$$

So $\widetilde{\mu}$ is a measure on \widetilde{M} .

Finally, we check that $\widetilde{\mu}$ is a complete measure, let E be a $\widetilde{\mu}$ measurable and null set, for all subset $C \subseteq E$, we have $\exists A, B \in \mathcal{M}$ s.t. $A \subseteq E \subseteq B$ and $\mu(A) = \mu(B) = 0$. Therefore

$$\phi\subseteq C\subseteq B$$

and

$$\mu(B) = 0.$$

We have $C \in \widetilde{\mathcal{M}}$.

(10) Here we review Riemann integral. Let f be a bounded function defined on $[a,b], a,b \in \mathbb{R}$. Given any partition $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ on [a,b] and tags $z_j \in [x_j,x_{j+1}]$, there corresponds a Riemann sum of f given by $R(f,P,\mathbf{z}) = \sum_{j=0}^{n-1} f(z_j)(x_{j+1}-x_j)$. The function f is called Riemann integrable with integral L if for every $\varepsilon > 0$ there exists some δ such that

$$|R(f, P, \mathbf{z}) - L| < \varepsilon,$$

whenever $||P|| < \delta$ and **z** is any tag on P. (Here $||P|| = \max_{j=0}^{n-1} |x_{j+1} - x_j|$ is the length of the partition.) Show that

(a) For any partition P, define its $Darboux\ upper$ and $lower\ sums$ by

$$\overline{R}(f, P) = \sum_{j} \sup \{f(x) : x \in [x_j, x_{j+1}]\} (x_{j+1} - x_j),$$

and

$$\underline{R}(f, P) = \sum_{j} \inf \{ f(x) : x \in [x_j, x_{j+1}] \} (x_{j+1} - x_j)$$

respectively. Show that for any sequence of partitions $\{P_n\}$ satisfying $\|P_n\| \to 0$ as $n \to \infty$, $\lim_{n \to \infty} \overline{R}(f, P_n)$ and $\lim_{n \to \infty} \underline{R}(f, P_n)$ exist.

(b) $\{P_n\}$ as above. Show that f is Riemann integrable if and only if

$$\lim_{n\to\infty} \overline{R}(f, P_n) = \lim_{n\to\infty} \underline{R}(f, P_n) = L.$$

(c) A set E in [a, b] is called of measure zero if for every $\varepsilon > 0$, there exists a countable subintervals J_n satisfying $\sum_n |J_n| < \varepsilon$ such that $E \subset \bigcup_n J_n$. Prove Lebsegue's theorem which asserts that f is Riemann integrable if and only if the set consisting of all discontinuity points of f is a set of

measure zero. Google for help if necessary.

Solution:

(a) It suffices to show: For every $\varepsilon > 0$, there exists some δ such that

$$0 \le \overline{R}(f, P) - \overline{R}(f) < \varepsilon,$$

and

$$0 \le \underline{R}(f) - \underline{R}(f, P) < \varepsilon,$$

for any partition $P, \ \|P\| < \delta$, where

$$\overline{R}(f) = \inf_{P} \overline{R}(f, P),$$

and

$$\underline{R}(f) = \sup_{P} \underline{R}(f, P).$$

.

If it is true, then $\lim_{n\to\infty} \overline{R}(f, P_n)$ and $\lim_{n\to\infty} \underline{R}(f, P_n)$ exist and equal to $\overline{R}(f)$ and $\underline{R}(f)$ respectively.

Given $\varepsilon > 0$, there exists a partition Q such that

$$\overline{R}(f) + \varepsilon/2 > \overline{R}(f,Q).$$

Let m be the number of partition points of Q (excluding the endpoints). Consider any partition P and let R be the partition by putting together P and Q. Note that the number of subintervals in P which contain some partition points of Q in its interior must be less than or equal to m. Denote the indices of the collection of these subintervals in P by J. We have

$$0 \le \overline{R}(f, P) - \overline{R}(f, R) \le \sum_{j \in J} 2M \Delta x_j \le 2M \times m||P||,$$

where $M = \sup_{[a,b]} |f|$, because the contributions of $\overline{R}(f,P)$ and $\overline{R}(f,Q)$ from the subintervals not in J cancel out. Hence, by the fact that R is a refinement of Q,

$$\overline{R}(f) + \varepsilon/2 > \overline{R}(f,Q) \ge \overline{R}(f,R) \ge \overline{R}(f,P) - 2Mm||P||,$$

i.e.,

$$0 \le \overline{R}(f, P) - \overline{R}(f) < \varepsilon/2 + 2Mm||P||.$$

Now, we choose

$$\delta < \frac{\varepsilon}{1 + 4Mm},$$

Then for P, $||P|| < \delta$,

$$0 \le \overline{R}(f, P) - \overline{R}(f) < \varepsilon.$$

Similarly, one can prove the second inequality.

(b) With the result in part a, it suffices to prove the following result: Let f be bounded on [a, b]. Then f is Riemann integrable on [a, b] if and only if $\overline{R}(f) = \underline{R}(f)$. When this holds, $L = \overline{R}(f) = \underline{R}(f)$.

According to the definition of integrability, when f is integrable, there exists some $L \in \mathbb{R}$ so that for any given $\varepsilon > 0$, there is a $\delta > 0$ such that for all partitions P with $||P|| < \delta$,

$$|R(f, P, z) - L| < \varepsilon/2,$$

holds for any tags z. Let (P_1, z_1) be another tagged partition. By the

triangle inequality we have

$$|R(f, P, z) - R(f, P_1, z_1)| \le |R(f, P, z) - L| + |R(f, P_1, z_1) - L| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Since the tags are arbitrary, it implies

$$\overline{R}(f, P) - \underline{R}(f, P) \le \varepsilon.$$

As a result,

$$0 \le \overline{R}(f) - \underline{R}(f) \le \overline{R}(f, P) - \underline{R}(f, P) \le \varepsilon.$$

Note that the first inequality comes from the definition of the upper/lower Riemann integrals. Since $\varepsilon > 0$ is arbitrary, $\overline{R}(f) = \underline{R}(f)$.

Conversely, using $\overline{R}(f) = \underline{R}(f)$ in part a, we know that for $\varepsilon > 0$, there exists a δ such that

$$0 \le \overline{R}(f, P) - \underline{R}(f, P) < \varepsilon,$$

for all partitions $P, \|P\| < \delta$. We have

$$\begin{split} R(f,P,z) - \underline{R}(f) & \leq & \overline{R}(f,P) - \underline{R}(f) \\ & \leq & \overline{R}(f,P) - \underline{R}(f,P) \\ & < & \varepsilon, \end{split}$$

and similarly,

$$\overline{R}(f) - R(f, P, z) \le \overline{R}(f, P) - \underline{R}(f, P) < \varepsilon.$$

As $\overline{R}(f) = \underline{R}(f)$, combining these two inequalities yields

$$|R(f, P, z) - \underline{R}(f)| < \varepsilon,$$

for all P, $||P|| < \delta$, so f is integrable, where $L = \underline{R}(f)$.

(c) For any bounded f on [a, b] and $x \in [a, b]$, its **oscillation** at x is defined by

$$\omega(f, x) = \inf_{\delta} \{ (\sup f(y) - \inf f(y)) : y \in (x - \delta, x + \delta) \cap [a, b] \}$$
$$= \lim_{\delta \to 0^+} \{ (\sup f(y) - \inf f(y)) : y \in (x - \delta, x + \delta) \cap [a, b] \}.$$

It is clear that $\omega(f,x)=0$ if and only if f is continuous at x. The set of discontinuity of f, D, can be written as $D=\bigcup_{k=1}^{\infty}O(k)$, where $O(k)=\{x\in[a,b]:\omega(f,x)\geq 1/k\}$. Suppose that f is Riemann integrable on [a,b]. It suffices to show that each O(k) is of measure zero. Given $\varepsilon>0$, by Integrability of f, we can find a partition P such that

$$\overline{R}(f,P) - \underline{R}(f,P) < \varepsilon/2k.$$

Let J be the index set of those subintervals of P which contains some elements of O(k) in their interiors. Then

$$\frac{1}{k} \sum_{j \in J} |I_j| \le \sum_{j \in J} (\sup_{I_j} f - \inf_{I_j} f) \Delta x_j$$

$$\le \sum_{j=1}^n (\sup_{I_j} f - \inf_{I_j} f) \Delta x_j$$

$$= \overline{R}(f, P) - \underline{R}(f, P)$$

$$< \varepsilon/2k.$$

Therefore

$$\sum_{j \in J} |I_j| < \varepsilon/2.$$

Now, the only possibility that an element of O(k) is not contained by one of these I_j is it being a partition point. Since there are finitely many partition points, say N, we can find some open intervals $I'_1, ..., I'_N$ containing these partition points which satisfy

$$\sum |I_i'| < \varepsilon/2.$$

So $\{I_j\}$ and $\{I'_i\}$ together form a covering of O(k) and its total length is strictly less than ε . We conclude that O(k) is of measure zero.

Conversely, given $\varepsilon > 0$, fix a large k such that $\frac{1}{k} < \varepsilon$. Now the set O(k) is of measure zero, we can find a sequence of open intervals $\{I_j\}$ satisfying

$$O(k) \subseteq \bigcup_{j=1}^{\infty} I_j,$$

$$\sum_{j=1}^{\infty} |I_{i_j}| < \varepsilon.$$

One can show that O(k) is closed and bounded, hence it is compact. As a result, we can find $I_{i_1}, ..., I_{i_N}$ from $\{I_j\}$ so that

$$O(k) \subseteq I_{i_1} \cup ... \cup I_{i_N},$$

$$\sum_{i=1}^{N} |I_j| < \varepsilon.$$

Without loss of generality we may assume that these open intervals are mutually disjoint since, whenever two intervals have nonempty intersection, we can put them together to form a larger open interval. Observe that $[a,b] \setminus (I_{i_1} \cup \cdots \cup I_{i_N})$ is a finite disjoint union of closed bounded

intervals, call them $V_i's$, $i \in A$. We will show that for each $i \in A$, one can find a partition on each $V_i = [v_{i-1}, v_i]$ such that the oscillation of f on each subinterval in this partition is less than 1/k.

Fix $i \in A$. For each $x \in V_i$, we have

$$\omega(f,x) < \frac{1}{k}.$$

By the definition of $\omega(f,x)$, one can find some $\delta_x > 0$ such that

$$\sup\{f(y): y \in B(x, \delta_x) \cap [a, b]\} - \inf\{f(z): z \in B(x, \delta_x) \cap [a, b]\} < \frac{1}{k},$$

where $B(y,\beta)=(y-\beta,y+\beta)$. Note that $V_i\subseteq\bigcup_{x\in V_i}B(x,\delta_x)$. Since V_i is closed and bounded, it is compact. Hence, there exist $x_{l_1},\ldots,x_{l_M}\in V_i$ such that $V_i\subseteq\bigcup_{j=1}^M B(x_{i_j},\delta_{x_{l_j}})$. By replacing the left end point of $B(x_{i_j},\delta_{x_{l_j}})$ with v_{i-1} if $x_{l_j}-\delta_{x_{l_j}}< v_{i-1}$, and replacing the right end point of $B(x_{i_j},\delta_{x_{l_j}})$ with v_i if $x_{l_j}+\delta_{x_{l_j}}>v_i$, one can list out the endpoints of $\{B(x_{l_j},\delta_{l_j})\}_{j=1}^M$ and use them to form a partition S_i of V_i . It can be easily seen that each subinterval in S_i is covered by some $B(x_{l_j},\delta_{x_{l_j}})$, which implies that the oscillation of f in each subinterval is less than 1/k. So, S_i is the partition that we want.

The partitions S_i 's and the endpoints of $I_{i_1}, ..., I_{i_N}$ form a partition P of [a, b]. We have

$$\overline{R}(f,P) - \underline{R}(f,P) = \sum_{I_{i_j}} (M_j - m_j) \Delta x_j + \sum_{I_{i_j}} (M_j - m_j) \Delta x_j$$

$$\leq 2M \sum_{j=1}^N |I_{i_j}| + \frac{1}{k} \sum_{I_{i_j}} \Delta x_j$$

$$\leq 2M \varepsilon + \varepsilon (b - a)$$

$$= [2M + (b - a)] \varepsilon,$$

where $M=\sup_{[a,b]}|f|$ and the second summation is over all subintervals in $V_i, i\in A$. Hence f is integrable on [a,b].