MATH5011 Exercise 9

Optional. Let M be the collection of all sets E in the unit interval [0, 1] such that either E or its complement is at most countable. Let μ be the counting measure on this σ-algebra M. If g(x) = x for 0 ≤ x ≤ 1, show that g is not M-measurable, although the mapping

$$f \mapsto \sum x f(x) = \int f g \, d\mu$$

makes sense for every $f \in L^1(\mu)$ and defines a bounded linear functional on $L^1(\mu)$. Thus $(L^1)^* \neq L^{\infty}$ in this situation.

- (2) Optional. Let $L^{\infty} = L^{\infty}(m)$, where *m* is Lebesgue measure on I = [0, 1]. Show that there is a bounded linear functional $\Lambda \neq 0$ on L^{∞} that is 0 on C(I), and therefore there is no $g \in L^1(m)$ that satisfies $\Lambda f = \int_I fg \, dm$ for every $f \in L^{\infty}$. Thus $(L^{\infty})^* \neq L^1$.
- (3) Prove Brezis-Lieb lemma for 0
 Hint: Use |a + b|^p ≤ |a|^p + |b|^p in this range.
- (4) Let $f_n, f \in L^p(\mu), 0 a.e., <math>||f_n||_p \to ||f||_p$. Show that $||f_n f||_p \to 0.$
- (5) Suppose μ is a positive measure on X, $\mu(X) < \infty$, $f_n \in L^1(\mu)$ for $n = 1, 2, 3, \ldots, f_n(x) \to f(x)$ a.e., and there exists p > 1 and $C < \infty$ such that $\int_X |f_n|^p d\mu < C$ for all n. Prove that

$$\lim_{n \to \infty} \int_X |f - f_n| \, d\mu = 0.$$

Hint: $\{f_n\}$ is uniformly integrable.

- (6) We have the following version of Vitali's convergence theorem. Let $\{f_n\} \subset L^p(\mu), 1 \leq p < \infty$. Then $f_n \to f$ in L^p -norm if and only if
 - (i) $\{f_n\}$ converges to f in measure,
 - (ii) $\{|f_n|^p\}$ is uniformly integrable, and
 - (iii) $\forall \varepsilon > 0, \exists \text{ measurable } E, \mu(E) < \infty, \text{ such that } \int_{X \setminus E} |f_n|^p d\mu < \varepsilon, \forall n.$

I found this statement from PlanetMath. Prove or disprove it.

- (7) Let $\{x_n\}$ be bounded in some normed space X. Suppose for Y dense in X', $\Lambda x_n \to \Lambda x, \forall \Lambda \in Y$ for some x. Deduce that $x_n \rightharpoonup x$.
- (8) Consider $f_n(x) = n^{1/p} \chi(nx)$ in $L^p(\mathbb{R})$. Then $f_n \rightharpoonup 0$ for p > 1 but not for p = 1. Here $\chi = \chi_{[0,1]}$.
- (9) Let $\{f_n\}$ be bounded in $L^p(\mu)$, $1 . Prove that if <math>f_n \to f$ a.e., then $f_n \to f$. Is this result still true when p = 1?
- (10) Provide a proof of Proposition 5.3.
- (11) Show that M(X), the space of all signed measures defined on (X, \mathfrak{M}) , forms a Banach space under the norm $\|\mu\| = |\mu|(X)$.
- (12) Let \mathcal{L}^1 be the Lebesgue measure on (0,1) and μ the counting measure on (0,1). Show that $\mathcal{L}^1 \ll \mu$ but there is no $h \in L^1(\mu)$ such that $d\mathcal{L}^1 = h d\mu$. Why?
- (13) Let μ be a measure and λ a signed measure on (X, \mathfrak{M}) . Show that $\lambda \ll \mu$ if and only if $\forall \varepsilon > 0$, there is some $\delta > 0$ such that $|\lambda(E)| < \varepsilon$ whenever $|\mu(E)| < \delta, \forall E \in \mathfrak{M}.$
- (14) Let μ be a σ -finite measure and λ a signed measure on (X, \mathfrak{M}) satisfying $\lambda \ll \mu$. Show that

$$\int f \, d\lambda = \int f h \, d\mu, \quad \forall f \in L^1(\lambda), \ f h \in L^1(\mu)$$

where
$$h = \frac{d\lambda}{d\mu} \in L^1(\mu)$$
.

(15) Let μ , λ and ν be finite measures, $\mu \gg \lambda \gg \nu$. Show that $\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \frac{d\lambda}{d\mu}$, μ a.e.