MATH5011 Real Analysis I

Exercise 8

Standard notations are in force. Those with *,taken from $[R]$, are optional.

$$
\begin{equation*}
\Phi(t)=\int_{X}|f+t g|^{p} d \mu \tag{1}
\end{equation*}
$$

is differentiable at $t=0$ and

$$
\Phi^{\prime}(0)=p \int_{X}|f|^{p-2} f g d \mu .
$$

Hint: Use the convexity of $t \mapsto|f+t g|^{p}$ to get

$$
|f+t g|^{p}-|f|^{p} \leq t\left(|f+g|^{p}-|f|^{p}\right), \quad t>0
$$

and a similar estimate for $t<0$.
(2) Suppose f is a measurable function on X, μ is a positive measure on X, and

$$
\varphi(p)=\int_{X}|f|^{p} d \mu=\|f\|_{p}^{p} \quad(0<p<\infty)
$$

Let $E=\{p: \varphi(p)<\infty\}$. Assume $\|f\|_{\infty}>0$.
(a) If $r<p<s, r \in E$, and $s \in E$, prove that $p \in E$.
(b) Prove that $\log \varphi$ is convex in the interior of E and that φ is continuous on E.
(c) By (a), E is connected. Is E necessarily open? Closed? Can E consist of a single point? Can E be any connected subset of $(0, \infty)$?
(d) If $r<p<s$, prove that $\|f\|_{p} \leq \max \left(\|f\|_{r},\|f\|_{s}\right)$. Show that this implies the inclusion $L^{r}(\mu) \cap L^{s}(\mu) \subset L^{p}(\mu)$.
(e) Assume that $\|f\|_{r}<\infty$ for some $r<\infty$ and prove that

$$
\|f\|_{p} \rightarrow\|f\|_{\infty} \quad \text { as } p \rightarrow \infty
$$

(3) Assume, in addition to the hypothesis of the previous problem, that

$$
\mu(X)=1
$$

(a) Prove that $\|f\|_{r} \leq\|f\|_{s}$ if $0<r<s \leq \infty$.
(b) Under what conditions does it happen that $0<r<s \leq \infty$ and $\|f\|_{r}=$ $\|f\|_{s}<\infty$?
(c) Prove that $L^{r}(\mu) \supset L^{s}(\mu)$ if $0<r<s$. Under what conditions do these two spaces contain the same functions?
(d) Assume that $\|f\|_{r}<\infty$ for some $r>0$, and prove that

$$
\lim _{p \rightarrow 0}\|f\|_{p}=\exp \left\{\int_{X} \log |f| d \mu\right\}
$$

if $\exp \{-\infty\}$ is defined to be 0 .
(4) For some measures, the relation $r<s$ implies $L^{r}(\mu) \subset L^{s}(\mu)$; for others, the inclusion is reversed; and there are some for which $L^{r}(\mu)$ does not contain $L^{s}(\mu)$ is $r \neq s$. Give examples of these situations, and find conditions on μ under which these situations will occur.
(5) * Suppose $\mu(\Omega)=1$, and suppose f and g are positive measurable functions on Ω such that $f g \geq 1$. Prove that

$$
\int_{\Omega} f d \mu \cdot \int_{\Omega} g d \mu \geq 1
$$

(6) * Suppose $\mu(\Omega)=1$ and $h: \Omega \rightarrow[0, \infty]$ is measurable. If

$$
A=\int_{\Omega} h d \mu
$$

prove that

$$
\sqrt{1+A^{2}} \leq \int_{\Omega} \sqrt{1+h^{2}} d \mu \leq 1+A
$$

If μ is Lebesgue measure on $[0,1]$ and if h is continuous, $h=f^{\prime}$, the above inequalities have a simple geometric interpretation. From this, conjecture (for general Ω) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.
(7) * Suppose $1<p<\infty, f \in L^{p}=L^{p}((0, \infty))$, relative to Lebesgue measure, and

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t \quad(0<x<\infty)
$$

(a) Prove Hardy's inequality

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

which shows that the mapping $f \rightarrow F$ carries L^{p} into L^{p}.
(b) Prove that equality holds only if $f=0$ a.e.
(c) Prove that the constant $\frac{p}{p-1}$ cannot be replaced by a smaller one.
(d) If $f>0$ and $f \in L^{1}$, prove that $F \notin L^{1}$.

Suggestions: (a) Assume first that $f \geq 0$ and $f \in C_{c}((0, \infty))$. Integration by parts gives

$$
\int_{0}^{\infty} F^{p}(x) d x=-p \int_{0}^{\infty} F^{p-1}(x) x F^{\prime}(x) d x
$$

Note that $x F^{\prime}=f-F$, and apply Hölder's inequality to $\int F^{p-1} f$. Then derive the general case.
(c) Take $f(x)=x^{-1 / p}$ on $[1, A], f(x)=0$ elsewhere, for large A. See also Exercise 14, Chap. 8 in $[\mathrm{R}]$.
(8) * Consider $L^{p}\left(\mathbb{R}^{n}\right)$ with the Lebesgue measure, $0<p<\infty$. Show that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ holds $\forall f, g$ implies that $p \geq 1$. Hint: For $0<p<1$, $x^{p}+y^{p} \geq(x+y)^{p}$.
(9) * Consider $L^{p}(\mu), 0<p<1$. Then $\frac{1}{q}+\frac{1}{p}=1, q<0$.
(a) Prove that $\|f g\|_{1} \geq\|f\|_{p}\|g\|_{q}$.
(b) $f_{1}, f_{2} \geq 0 .\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p}$.
(c) $d(f, g) \stackrel{\text { def }}{=}\|f-g\|_{p}^{p}$ defines a metric on $L^{p}(\mu)$.
(10) Give a proof of the separability of $L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$, without using Weierstrass approximation theorem.
Suggestion: Cover \mathbb{R}^{n} with many cubes and consider the combinations $s=$ $\sum \alpha_{j} \chi_{C_{j}}$ where C_{j} are the cubes and $\alpha_{j} \in \mathbb{Q}$.
(11) (a) Let X_{1} be a subset of the metric space (X, d). Show that $\left(X_{1}, d\right)$ is separable if (X, d) is separable.
(b) Let $E \subset \mathbb{R}^{n}$ and consider $L^{p}(E), 1 \leq p<\infty$, where the measure is understood to be the restriction of \mathcal{L}^{n} on E. Is it separable?
(12) Let X be a metric space consisting of infinitely many elements and μ a Borel measure on X such that $\mu(B)>0$ on any metric ball (i.e. $B=\left\{x: d\left(x, x_{0}\right)<\right.$ $\rho\}$ for some $x_{0} \in X$ and $\rho>0$. Show that $L^{\infty}(\mu)$ is non-separable.
Suggestion: Find disjoint balls $B_{r_{j}}\left(x_{j}\right)$ and consider $\chi_{B_{r_{j}}\left(x_{j}\right)}$.
(13) Show that $L^{1}(\mu)^{\prime}=L^{\infty}(\mu)$ provided (X, \mathfrak{M}, μ) is σ-finite, i.e., $\exists X_{j}, \mu\left(X_{j}\right)<$ ∞, such that $X=\bigcup X_{j}$.
Hint: First assume $\mu(X)<\infty$. Show that $\exists g \in L^{q}(\mu), \forall q>1$, such that

$$
\Lambda f=\int f g d \mu, \quad \forall f \in L^{p}, p>1
$$

Next show that $g \in L^{\infty}(\mu)$ by proving the set $\{x:|g(x)| \geq M+\varepsilon\}$ has measure zero $\forall \varepsilon>0$. Here $M=\|\Lambda\|$.
(14) (a) For $1 \leq p<\infty,\|f\|_{p},\|g\|_{p} \leq R$, prove that

$$
\int\left||f|^{p}-|g|^{p}\right| d \mu \leq 2 p R^{p-1}\|f-g\|_{p}
$$

(b) Deduce that the map $f \mapsto|f|^{p}$ from $L^{p}(\mu)$ to $L^{1}(\mu)$ is continuous.

Hint: Try $\left|x^{p}-y^{p}\right| \leq p|x-y|\left(x^{p-1}+y^{p-1}\right)$.

