MATH5011 Real Analysis I

Exercise 8

Standard notations are in force. Those with *, taken from [R], are optional.

(1)

$$\Phi(t) = \int_X |f + tg|^p \, d\mu$$

is differentiable at t = 0 and

$$\Phi'(0) = p \int_X |f|^{p-2} fg \, d\mu$$

Hint: Use the convexity of $t \mapsto |f + tg|^p$ to get

$$|f + tg|^p - |f|^p \le t(|f + g|^p - |f|^p), \quad t > 0$$

and a similar estimate for t < 0.

(2) Suppose f is a measurable function on X, μ is a positive measure on X, and

$$\varphi(p) = \int_X |f|^p \, d\mu = \|f\|_p^p \quad (0$$

Let $E = \{p : \varphi(p) < \infty\}$. Assume $||f||_{\infty} > 0$.

- (a) If $r , and <math>s \in E$, prove that $p \in E$.
- (b) Prove that $\log \varphi$ is convex in the interior of E and that φ is continuous on E.
- (c) By (a), E is connected. Is E necessarily open? Closed? Can E consist of a single point? Can E be any connected subset of $(0, \infty)$?
- (d) If $r , prove that <math>||f||_p \leq \max(||f||_r, ||f||_s)$. Show that this implies the inclusion $L^r(\mu) \cap L^s(\mu) \subset L^p(\mu)$.

(e) Assume that $\|f\|_r < \infty$ for some $r < \infty$ and prove that

$$||f||_p \to ||f||_\infty$$
 as $p \to \infty$.

(3) Assume, in addition to the hypothesis of the previous problem, that

$$\mu(X) = 1.$$

- (a) Prove that $\|f\|_r \le \|f\|_s$ if $0 < r < s \le \infty$.
- (b) Under what conditions does it happen that $0 < r < s \le \infty$ and $\|f\|_r = \|f\|_s < \infty$?
- (c) Prove that $L^r(\mu) \supset L^s(\mu)$ if 0 < r < s. Under what conditions do these two spaces contain the same functions?
- (d) Assume that $||f||_r < \infty$ for some r > 0, and prove that

$$\lim_{p \to 0} \|f\|_p = \exp\left\{\int_X \log|f| \, d\mu\right\}$$

if $\exp\{-\infty\}$ is defined to be 0.

- (4) For some measures, the relation r < s implies L^r(μ) ⊂ L^s(μ); for others, the inclusion is reversed; and there are some for which L^r(μ) does not contain L^s(μ) is r ≠ s. Give examples of these situations, and find conditions on μ under which these situations will occur.
- (5) * Suppose $\mu(\Omega) = 1$, and suppose f and g are positive measurable functions on Ω such that $fg \ge 1$. Prove that

$$\int_{\Omega} f \, d\mu \cdot \int_{\Omega} g \, d\mu \ge 1.$$

(6) * Suppose $\mu(\Omega) = 1$ and $h : \Omega \to [0, \infty]$ is measurable. If

$$A = \int_{\Omega} h \, d\mu,$$

prove that

$$\sqrt{1+A^2} \le \int_{\Omega} \sqrt{1+h^2} \, d\mu \le 1+A.$$

If μ is Lebesgue measure on [0, 1] and if h is continuous, h = f', the above inequalities have a simple geometric interpretation. From this, conjecture (for general Ω) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.

(7) * Suppose $1 , <math>f \in L^p = L^p((0,\infty))$, relative to Lebesgue measure, and

$$F(x) = \frac{1}{x} \int_0^x f(t) dt \quad (0 < x < \infty).$$

(a) Prove Hardy's inequality

$$||F||_p \le \frac{p}{p-1} ||f||_p$$

which shows that the mapping $f \to F$ carries L^p into L^p .

- (b) Prove that equality holds only if f = 0 a.e.
- (c) Prove that the constant $\frac{p}{p-1}$ cannot be replaced by a smaller one.
- (d) If f > 0 and $f \in L^1$, prove that $F \notin L^1$.

Suggestions: (a) Assume first that $f \ge 0$ and $f \in C_c((0,\infty))$. Integration by parts gives

$$\int_0^\infty F^p(x) \, dx = -p \int_0^\infty F^{p-1}(x) x F'(x) \, dx.$$

Note that xF' = f - F, and apply Hölder's inequality to $\int F^{p-1}f$. Then derive the general case.

(c) Take $f(x) = x^{-1/p}$ on [1, A], f(x) = 0 elsewhere, for large A. See also Exercise 14, Chap. 8 in [R].

- (8) * Consider $L^p(\mathbb{R}^n)$ with the Lebesgue measure, $0 . Show that <math>\|f + g\|_p \leq \|f\|_p + \|g\|_p$ holds $\forall f, g$ implies that $p \geq 1$. Hint: For $0 , <math>x^p + y^p \geq (x + y)^p$.
- (9) * Consider $L^{p}(\mu)$, $0 . Then <math>\frac{1}{q} + \frac{1}{p} = 1$, q < 0. (a) Prove that $||fg||_{1} \ge ||f||_{p} ||g||_{q}$. (b) $f_{1}, f_{2} \ge 0$. $||f + g||_{p} \ge ||f||_{p} + ||g||_{p}$. (c) $d(f,g) \stackrel{\text{def}}{=} ||f - g||_{p}^{p}$ defines a metric on $L^{p}(\mu)$.
- (10) Give a proof of the separability of $L^p(\mathbb{R}^n)$, $1 \le p < \infty$, without using Weierstrass approximation theorem. Suggestion: Cover \mathbb{R}^n with many cubes and consider the combinations $s = \sum \alpha_j \chi_{C_j}$ where C_j are the cubes and $\alpha_j \in \mathbb{Q}$.
- (11) (a) Let X_1 be a subset of the metric space (X, d). Show that (X_1, d) is separable if (X, d) is separable.
 - (b) Let $E \subset \mathbb{R}^n$ and consider $L^p(E)$, $1 \leq p < \infty$, where the measure is understood to be the restriction of \mathcal{L}^n on E. Is it separable?
- (12) Let X be a metric space consisting of infinitely many elements and μ a Borel measure on X such that μ(B) > 0 on any metric ball (i.e. B = {x : d(x, x₀) < ρ} for some x₀ ∈ X and ρ > 0. Show that L[∞](μ) is non-separable. Suggestion: Find disjoint balls B_{r_j}(x_j) and consider χ<sub>B_{r_j}(x_j).
 </sub>
- (13) Show that $L^1(\mu)' = L^{\infty}(\mu)$ provided (X, \mathfrak{M}, μ) is σ -finite, i.e., $\exists X_j, \mu(X_j) < \infty$, such that $X = \bigcup X_j$.

Hint: First assume $\mu(X) < \infty$. Show that $\exists g \in L^q(\mu), \forall q > 1$, such that

$$\Lambda f = \int fg \, d\mu, \quad \forall f \in L^p, \ p > 1.$$

Next show that $g \in L^{\infty}(\mu)$ by proving the set $\{x : |g(x)| \ge M + \varepsilon\}$ has measure zero $\forall \varepsilon > 0$. Here $M = ||\Lambda||$.

(14) (a) For $1 \le p < \infty$, $||f||_p$, $||g||_p \le R$, prove that

$$\int ||f|^p - |g|^p| \ d\mu \le 2pR^{p-1} \|f - g\|_p.$$

(b) Deduce that the map $f \mapsto |f|^p$ from $L^p(\mu)$ to $L^1(\mu)$ is continuous. Hint: Try $|x^p - y^p| \le p|x - y|(x^{p-1} + y^{p-1}).$