MATH5011 Exercise 4

Standard notations are in force. Problem 4 is for math-majors only.

(1) Identify the Riesz measures corresponding to the following positive functionals $(X = \mathbb{R})$:

(a)
$$\Lambda_1 f = \int_a^b f \, dx$$
, and
(b) $\Lambda_2 f = f(0)$.

(2) Let c be the counting measure on \mathbb{R} ,

$$c(A) = \begin{cases} \#A, & A \neq \phi, \\ 0, & A = \phi. \end{cases}$$

Is there a positive functional

$$\Lambda f = \int f \, dc \quad ?$$

(3) Define the distance between points (x_1, y_1) and (x_2, y_2) in the plane to be

$$|y_1 - y_2|$$
 if $x_1 = x_2$, $1 + |y_1 - y_2|$ if $x_1 \neq x_2$.

Show that this is indeed a metric, and that the resulting metric space X is locally compact.

If $f \in C_c(X)$, let x_1, \ldots, x_n be those values of x for which $f(x, y) \neq 0$ for at least one y (there are only finitely many such x!), and define

$$\Lambda f = \sum_{j=1}^{n} \int_{-\infty}^{\infty} f(x_j, y) \, dy.$$

Let μ be the measure associated with this Λ by Theorem 2.14 in [R]. If E is the x-axis, show that $\mu(E) = \infty$ although $\mu(K) = 0$ for every compact $K \subset E$.

- (4) Let λ be a Borel measure and μ a Riesz measure on \mathbb{R}^n such that $\lambda(G) = \mu(G)$ for all open sets G. Show that λ coincides with μ on \mathcal{B} .
- (5) Let μ be a Borel measure on \mathbb{R}^n such that $\mu(K) < \infty$ for all compact K. Show that μ is the restriction of some Riesz measure on \mathcal{B} . Hint: Use Riesz representation theorem and Problem 5. This exercise gives a characterization of the Riesz measure on \mathbb{R}^n .
- (6) Let μ be a Riesz measure on \mathbb{R}^n . Show that for every measurable function f, there exists a sequence of continuous function $\{f_n\}$ such that $f_n \to f$ almost everywhere.
- (7) A step function on \mathbb{R} is a simple function s where $s^{-1}(a)$ is either empty or an interval for every $a \in \mathbb{R}$. Show that for every Lebesgue integrable function f on \mathbb{R} , there exists a sequence of step functions $\{s_j\}$ such that

$$\lim_{j \to \infty} \int |s_j(x) - f(x)| d\mathcal{L}^1(x) = 0.$$

Hint: Approximate f by simple functions (see Ex 2) and then apply Lusin's theorem.