MATH5011 Exercise 4

Standard notations are in force. Problem 4 is for math-majors only.
(1) Identify the Riesz measures corresponding to the following positive functionals $(X=\mathbb{R})$:
(a) $\Lambda_{1} f=\int_{a}^{b} f d x$, and
(b) $\Lambda_{2} f=f(0)$.
(2) Let c be the counting measure on \mathbb{R},

$$
c(A)= \begin{cases}\# A, & A \neq \phi \\ 0, & A=\phi\end{cases}
$$

Is there a positive functional

$$
\Lambda f=\int f d c ?
$$

(3) Define the distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane to be

$$
\left|y_{1}-y_{2}\right| \quad \text { if } x_{1}=x_{2}, \quad 1+\left|y_{1}-y_{2}\right| \quad \text { if } x_{1} \neq x_{2} .
$$

Show that this is indeed a metric, and that the resulting metric space X is locally compact.

If $f \in C_{c}(X)$, let x_{1}, \ldots, x_{n} be those values of x for which $f(x, y) \neq 0$ for at least one y (there are only finitely many such $x!$), and define

$$
\Lambda f=\sum_{j=1}^{n} \int_{-\infty}^{\infty} f\left(x_{j}, y\right) d y
$$

Let μ be the measure associated with this Λ by Theorem 2.14 in [R]. If E is the x-axis, show that $\mu(E)=\infty$ although $\mu(K)=0$ for every compact $K \subset E$.
(4) Let λ be a Borel measure and μ a Riesz measure on \mathbb{R}^{n} such that $\lambda(G)=\mu(G)$ for all open sets G. Show that λ coincides with μ on \mathcal{B}.
(5) Let μ be a Borel measure on \mathbb{R}^{n} such that $\mu(K)<\infty$ for all compact K. Show that μ is the restriction of some Riesz measure on \mathcal{B}. Hint: Use Riesz representation theorem and Problem 5. This exercise gives a characterization of the Riesz measure on \mathbb{R}^{n}.
(6) Let μ be a Riesz measure on \mathbb{R}^{n}. Show that for every measurable function f, there exists a sequence of continuous function $\left\{f_{n}\right\}$ such that $f_{n} \rightarrow f$ almost everywhere.
(7) A step function on \mathbb{R} is a simple function s where $s^{-1}(a)$ is either empty or an interval for every $a \in \mathbb{R}$. Show that for every Lebesgue integrable function f on \mathbb{R}, there exists a sequence of step functions $\left\{s_{j}\right\}$ such that

$$
\lim _{j \rightarrow \infty} \int\left|s_{j}(x)-f(x)\right| d \mathcal{L}^{1}(x)=0
$$

Hint: Approximate f by simple functions (see Ex 2) and then apply Lusin's theorem.

