Suggested Solutions to Test

Yu Mei[†]

1. Let c_0 be the null sequence space, that is $c_0 := \{(x_n)_{n=1}^{\infty} : x_n \in \mathbb{R}; \lim_{n \to +\infty} x_n = 0\}$ and is endowed with sup-norm. Define an operator $T : c_0 \to c_0$ by

$$T(x) = (x_2, x_3, \cdots)$$

for $x = (x_1, x_2, x_3, \cdots) \in c_0$.

- (a) State the definition of adjoint operator of a bounded linear operator between two normed spaces.
- (b) Show that T is bounded and find its norm.
- (c) Recall that $c_0^* = \ell^1$. Find the adjoint operator $T^* : \ell^1 \to \ell^1$ of T.

Proof.

(a) Let T be a bounded linear operator between two normed space X and Y. Then the adjoint operator $T^*: Y^* \to X^*$ of T is defined by

$$(T^*f)(x) = f(Tx), \forall f \in X^*, x \in X,$$

where X^* and Y^* are the dual spaces of X and Y, respectively.

(b) Let $x = (x_n)_{n=1}^{\infty} \in c_0$. Then, it follows from the definition of T that

$$||T(x)||_{\infty} = \sup_{n \ge 2} |x_n| \le \sup_{n \ge 1} |x_n| = ||x||_{\infty},$$

where $\|\cdot\|_{\infty}$ denotes the sup-norm in c_0 . So, T is bounded and $\|T\| \leq 1$. On the other hand, we choose $\tilde{x} = (0, 1, 0, 0, \cdots)$ with only $x_2 = 1$, others 0. Then $\|\tilde{x}\|_{\infty} = 1$ and $T\tilde{x} = (1, 0, 0, \cdots)$ which yields that $\|T\tilde{x}\|_{\infty} = 1$. So, $\|T\| := \sup_{\|x\|_{\infty} \neq 0} \frac{\|Tx\|_{\infty}}{\|x\|_{\infty}} \geq \frac{\|T\tilde{x}\|_{\infty}}{\|\tilde{x}\|_{\infty}} = 1$.

Therefore, T is bounded with norm to be 1.

(c) For any $\xi = (\xi_n)_{n=1}^{\infty} \in c_0^* = \ell^1$ and $x = (x_n)_{n=1}^{\infty}$, it follows from (a) that

$$(T^*\xi)(x) = \xi(Tx) = \sum_{n=1}^{\infty} \xi_n x_{n+1}, \text{ since } Tx = (x_2, x_3, \cdots).$$

Set $\eta = (\eta_n)_{n=1}^{\infty} := (0, \xi_1, \xi_2, \cdots)$, it is obvious that $\eta \in \ell^1$, since $\xi \in \ell^1$. Then

$$(T^*\xi)(x) = \sum_{n=1}^{\infty} \eta_n x_n = \eta(x)$$

By the arbitrary of x, we have proved that, for any $\xi = (\xi_n)_{n=1}^{\infty} \in c_0^* = \ell^1$,

$$T^*\xi = \eta$$

where $\eta = (0, \xi_1, \xi_2, \cdots).$

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

2. Let X and Y be Banach spaces. Let $T: X \to Y$ be a linear operator. For each element $x \in X$, define a norm $\|\cdot\|_T$ on X by

$$||x||_T := ||x|| + ||Tx||$$

for $x \in X$.

- (a) Show that the norm $\|\cdot\|_T$ is equivalent to the original norm on X if and only if T is bounded.
- (b) State the definition of a closed operator.
- (c) Show that if T is a closed operator defined as above, then $\|\cdot\|_T$ is also a Banach norm on X.

Proof.

(a) Note that it is easy to check that $\|\cdot\|_T$ is indeed a norm on X. Assume that $\|\cdot\|_T$ is equivalent to the original one $\|\cdot\|$, i.e. there exist two positive constants a, b > 0 such that $a\|x\| \le \|x\|_T \le b\|x\|, \forall x \in X$. Then,

 $||x||_T := ||x|| + ||Tx|| \le b||x|| \le (b+1)||x||,$

which yields that $||Tx|| \le b||x||, \forall x \in X$. So, T is bounded. On the other hand, assume T is bounded, i.e. $||Tx|| \le ||T|| ||x||$. It follows that

$$||x|| \le (||x||_T :=)||x|| + ||Tx|| \le (1 + ||T||)||x||$$

So, $\|\cdot\|_T$ is equivalent to $\|\cdot\|$.

- (b) Let T be a bounded linear operator between two normed spaces X and Y. Then T is a closed operator if its graph $G(T) := \{(x, y) | x \in X, y = Tx\}$ is closed in the normed space $X \times Y$ endowed with norm $||(x, y)|| = ||x|| + ||y||, \forall x \in X, y \in Y.$
- (c) Let T be a closed operator. Let $\{x_n\}_{n=1}^{\infty}$ be any Cauchy sequence in the normed space $(X, \|\cdot\|_T)$, i.e.

$$\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^+, \quad s.t. \quad \|x_n - x_m\|_T = \|x_n - x_m\| + \|Tx_n - Tx_m\| < \varepsilon, \forall n, m > N(\varepsilon). \quad (\star)$$

Then, $\lim_{n \to +\infty} ||x_n - x||$, for some $x \in X$, and $\lim_{n \to +\infty} ||Tx_n - y|| = 0$, for some $y \in Y$, since $\{x_n\}$ and $\{Tx_n\}_{n=1}^{\infty}$ are Cauchy sequences of Banach space $(X, \|\cdot\|)$ and $(Y, \|\cdot\|)$ respectively. Since T is a closed operator, $(x_n, Tx_n) \to (x, y) \in G(T)$ as $n \to +\infty$, i.e. y = Tx. Let $m \to +\infty$ in (\star) , we have

$$||x_n - x||_T = ||x_n - x|| + ||Tx_n - Tx|| \le \varepsilon$$

Therefore, x_n converge to x in $(X, \|\cdot\|_T)$, which implies $(X, \|\cdot\|_T)$ is a Banach space.

3. Let X be normed space and F be its a closed subspace. Define a natural map $T: F^{**} \to X^{**}$ by

$$T(a)(\phi) := a(\phi|_F)$$

for $a \in F^{**}$ and $\phi \in X^*$, where $\phi|_F$ denotes the restriction of ϕ on F.

- (a) Show that T is an isometry.
- (b) State the definition of a reflexive space.
- (c) Show that if X is reflexive, then so is F.

Proof.

(a) Let $\phi \in X^*$ with $\|\phi\| \le 1$, since $|\phi|_F(x)| = |\phi(x)| \le \|\phi\| \|x\|$, $\forall x \in F$, then $\phi|_F \in F^*$ and $\|\phi|_F\| \le \|\phi\| \le 1$. Thus, T is well-defined and it is obvious that T is linear. Moreover, for any $a \in F^{**}$, $\phi \in X^*$,

$$|T(a)(\phi)| = |a(\phi|_F)| \le ||a|| ||\phi|_F|| \le ||a|| ||\phi||,$$

which yields that T is bounded and $||T|| \leq 1$.

Now, it remains to prove $||T|| \ge 1$. Indeed, for any $f \in F^*$, it follows from Hahn-Banach Theorem that, there exist a $\phi_f \in X^*$ such that $\phi_f|_F = f$ and $||\phi_f|| = ||f||$, since F is a subspace of X. Then,

$$|a(f)| = |a(\phi_f|_F)| = |T(a)(\phi_f)| \le \sup_{\phi \in X^*, \|\phi\| \le 1} |T(a)(\phi)| = \|Ta\|.$$

which yields that $||a|| \leq ||Ta||$.

- (b) Let X be a Banach space. Then X is reflexive, if $X = X^{**}$ in the sense of isometry.
- (c) We assume $F \subsetneq X$ w.l.o.g., otherwise, F = X is reflexive. To prove F reflexive, it suffices to show that for any $a \in F^{**}$, there exists a $x \in F$ such that $a(f) = f(x), \forall f \in F^*$. Since X is reflexive, there exists a $x \in X$ such that, for any $a \in F^{**}$ and $\phi \in X^*$,

$$T(a)(\phi) := a(\phi|_F) = \phi(x).$$

We claim that $x \in F$. Indeed, if not, then $x \in X - F$ and $\delta := \inf_{y \in F} ||x - y|| > 0$, since F is closed. Thus, by Hahn-Banach Theorem, there exist a $\phi \in X^*$ such that $||\phi|| = 1$, $\phi(y) = 0$, $\forall y \in F$, and $\phi(x) = \delta$ which implies that

$$0 = a(\phi|_F)(=: T(a)(\phi)) = \phi(x) = \delta,$$

but this is a contradiction!

Therefore, $a(\phi|_F) = \phi_F(x)$. Note that the Hahn-Banach Theorem yields that for any $f \in F^*$, there exist a $\phi \in X^*$ such that $f = \phi|_F$. So, F^{**} is reflexive.