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1. Let c0 be the null sequence space, that is c0 := {(xn)∞n=1 : xn ∈ R; lim
n→+∞

xn = 0} and is endowed with

sup-norm. Define an operator T : c0 → c0 by

T (x) = (x2, x3, · · · )

for x = (x1, x2, x3, · · · ) ∈ c0.

(a) State the definition of adjoint operator of a bounded linear operator between two normed spaces.

(b) Show that T is bounded and find its norm.

(c) Recall that c∗0 = `1. Find the adjoint operator T ∗ : `1 → `1 of T .

Proof.

(a) Let T be a bounded linear operator between two normed space X and Y . Then the adjoint operator
T ∗ : Y ∗ → X∗ of T is defined by

(T ∗f)(x) = f(Tx),∀f ∈ X∗, x ∈ X,

where X∗ and Y ∗ are the dual spaces of X and Y , respectively.

(b) Let x = (xn)∞n=1 ∈ c0. Then, it follows from the definition of T that

‖T (x)‖∞ = sup
n≥2
|xn| ≤ sup

n≥1
|xn| = ‖x‖∞,

where ‖ · ‖∞ denotes the sup-norm in c0. So, T is bounded and ‖T‖ ≤ 1.
On the other hand, we choose x̃ = (0, 1, 0, 0, · · · ) with only x2 = 1, others 0. Then ‖x̃‖∞ = 1 and

T x̃ = (1, 0, 0, · · · ) which yields that ‖T x̃‖∞ = 1. So, ‖T‖ := sup
‖x‖∞ 6=0

‖Tx‖∞
‖x‖∞ ≥

‖T x̃‖∞
‖x̃‖∞ = 1.

Therefore, T is bounded with norm to be 1.

(c) For any ξ = (ξn)∞n=1 ∈ c∗0 = `1 and x = (xn)∞n=1, it follows from (a) that

(T ∗ξ)(x) = ξ(Tx) =

∞∑
n=1

ξnxn+1, since Tx = (x2, x3, · · · ).

Set η = (ηn)∞n=1 := (0, ξ1, ξ2, · · · ), it is obvious that η ∈ `1, since ξ ∈ `1. Then

(T ∗ξ)(x) =

∞∑
n=1

ηnxn = η(x).

By the arbitrary of x, we have proved that, for any ξ = (ξn)∞n=1 ∈ c∗0 = `1,

T ∗ξ = η,

where η = (0, ξ1, ξ2, · · · ). �

† Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)
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2. Let X and Y be Banach spaces. Let T : X → Y be a linear operator. For each element x ∈ X, define a
norm ‖ · ‖T on X by

‖x‖T := ‖x‖+ ‖Tx‖

for x ∈ X.

(a) Show that the norm ‖ · ‖T is equivalent to the original norm on X if and only if T is bounded.

(b) State the definition of a closed operator.

(c) Show that if T is a closed operator defined as above, then ‖ · ‖T is also a Banach norm on X.

Proof.

(a) Note that it is easy to check that ‖ · ‖T is indeed a norm on X.
Assume that ‖ · ‖T is equivalent to the original one ‖ · ‖, i.e. there exist two positive constants a, b > 0
such that a‖x‖ ≤ ‖x‖T ≤ b‖x‖, ∀x ∈ X. Then,

‖x‖T := ‖x‖+ ‖Tx‖ ≤ b‖x‖ ≤ (b+ 1)‖x‖,

which yields that ‖Tx‖ ≤ b‖x‖,∀x ∈ X. So, T is bounded.
On the other hand, assume T is bounded, i.e. ‖Tx‖ ≤ ‖T‖‖x‖. It follows that

‖x‖ ≤ (‖x‖T :=)‖x‖+ ‖Tx‖ ≤ (1 + ‖T‖)‖x‖.

So, ‖ · ‖T is equivalent to ‖ · ‖.

(b) Let T be a bounded linear operator between two normed spaces X and Y . Then T is a closed operator
if its graph G(T ) := {(x, y)|x ∈ X, y = Tx} is closed in the normed space X × Y endowed with norm
‖(x, y)‖ = ‖x‖+ ‖y‖, ∀x ∈ X, y ∈ Y.

(c) Let T be a closed operator. Let {xn}∞n=1 be any Cauchy sequence in the normed space (X, ‖ · ‖T ), i.e.

∀ε > 0, ∃N(ε) ∈ N+, s.t. ‖xn − xm‖T = ‖xn − xm‖+ ‖Txn − Txm‖ < ε,∀n,m > N(ε). (?)

Then, lim
n→+∞

‖xn − x‖, for some x ∈ X, and lim
n→+∞

‖Txn − y‖ = 0, for some y ∈ Y , since {xn} and

{Txn}∞n=1 are Cauchy sequences of Banach space (X, ‖ · ‖) and (Y, ‖ · ‖) respectively. Since T is a closed
operator, (xn, Txn)→ (x, y) ∈ G(T ) as n→ +∞,i.e. y = Tx. Let m→ +∞ in (?), we have

‖xn − x‖T = ‖xn − x‖+ ‖Txn − Tx‖ ≤ ε

Therefore, xn converge to x in (X, ‖ · ‖T ), which implies (X, ‖ · ‖T ) is a Banach space.

3. Let X be normed space and F be its a closed subspace. Define a natural map T : F ∗∗ → X∗∗ by

T (a)(φ) := a(φ|F )

for a ∈ F ∗∗ and φ ∈ X∗, where φ|F denotes the restriction of φ on F .

(a) Show that T is an isometry.

(b) State the definition of a reflexive space.

(c) Show that if X is reflexive, then so is F.

Proof.
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(a) Let φ ∈ X∗ with ‖φ‖ ≤ 1, since |φ|F (x)| = |φ(x)| ≤ ‖φ‖‖x‖, ∀x ∈ F , then φ|F ∈ F ∗ and ‖φ|F ‖ ≤ ‖φ‖ ≤ 1.
Thus, T is well-defined and it is obvious that T is linear. Moreover, for any a ∈ F ∗∗, φ ∈ X∗,

|T (a)(φ)| = |a(φ|F )| ≤ ‖a‖‖φ|F ‖ ≤ ‖a‖‖φ‖,

which yields that T is bounded and ‖T‖ ≤ 1.
Now, it remains to prove ‖T‖ ≥ 1. Indeed, for any f ∈ F ∗, it follows from Hahn-Banach Theorem that,
there exist a φf ∈ X∗ such that φf |F = f and ‖φf‖ = ‖f‖, since F is a subspace of X. Then,

|a(f)| = |a(φf |F )| = |T (a)(φf )| ≤ sup
φ∈X∗,‖φ‖≤1

|T (a)(φ)| = ‖Ta‖.

which yields that ‖a‖ ≤ ‖Ta‖.

(b) Let X be a Banach space. Then X is reflexive, if X = X∗∗ in the sense of isometry.

(c) We assume F $ X w.l.o.g., otherwise, F = X is reflexive. To prove F reflexive, it suffices to show that
for any a ∈ F ∗∗, there exists a x ∈ F such that a(f) = f(x),∀f ∈ F ∗.
Since X is reflexive, there exists a x ∈ X such that, for any a ∈ F ∗∗ and φ ∈ X∗,

T (a)(φ) := a(φ|F ) = φ(x).

We claim that x ∈ F . Indeed, if not, then x ∈ X − F and δ := inf
y∈F
‖x− y‖ > 0, since F is closed. Thus,

by Hahn-Banach Theorem, there exist a φ ∈ X∗ such that ‖φ‖ = 1, φ(y) = 0 ,∀y ∈ F , and φ(x) = δ which
implies that

0 = a(φ|F )(=: T (a)(φ)) = φ(x) = δ,

but this is a contradiction!
Therefore, a(φ|F ) = φF (x). Note that the Hahn-Banach Theorem yields that for any f ∈ F ∗, there exist
a φ ∈ X∗ such that f = φ|F . So, F ∗∗ is reflexive.
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