Suggested Solution to Homework 6

$\mathrm{Yu} \mathrm{Mei}^{\dagger}$

P175, 6. Let H be a separable Hilbert space and M a countable dense subset of H. Show that H contains a total orthonormal sequence which can be obtained from M by the Gram-Schmidt process.

Proof. W.L.O.G. assume H is infinite dimensional separable Hilbert space. $M=\left\{x_{n}\right\}_{n=1}^{\infty}$ is a countable dense subset of H. Then these exist a linear independent subsequence $N=x_{n_{k}} \infty$ of M dense in H, otherwise, H is finite dimensional so that the conclusion is trivial. Using the Gram-Schmidt process, we can obtain an orthonormal sequence $e_{n_{k}}$ by $e_{n_{k}}=\frac{v_{n_{k}}}{\left\|v_{n_{k}}\right\|}$ with $v_{n_{k}}=x_{n_{k}}-\sum_{j=1}^{k-1}\left\langle x_{n_{k}}, e_{n_{j}}\right\rangle e_{n_{j}}$. Moreover, $\overline{\operatorname{span} e_{n_{k}}}=\overline{\operatorname{spanx} x_{n_{k}}}=$ H. Therefore, $e_{n_{k}}$ is total orthonormal sequence obtained from M in H.

P200, 4. Let H_{1} and H_{2} be Hilbert spaces and $T: H_{1} \rightarrow H_{2}$ a bounded linear operator. If $M_{1} \subset H_{1}$ and $M_{2} \subset H_{2}$ are such that $T\left(M_{1}\right) \subset M_{2}$, show that $M_{1}^{\perp} \supset T^{*}\left(M_{2}^{\perp}\right)$.

Proof. Let $z \in T^{*}\left(M_{2}^{\perp}\right)$. Then, there exist $y \in M_{2}^{\perp}$ such that $z=T^{*} y$. By the definition of Hilbert-adjoint operator, for any $x \in M_{1}^{\perp}$, one has,

$$
\left\langle x, T^{*} y\right\rangle=\langle T x, y\rangle=0,
$$

since $T x \in T\left(M_{1}\right) \subset M_{2}$ and $y \in M_{2}^{\perp}$. Therefore, $z=T^{*} y \in M_{1}^{\perp}$ so that $M_{1}^{\perp} \supset T^{*}\left(M_{2}^{\perp}\right)$.
P200, 5. Let M_{1} and M_{2} in Prob. 4 be closed subspaces. Show that then $T\left(M_{1}\right) \subset M_{2}$ if and only if $M_{1}^{\perp} \supset T^{*}\left(M_{2}^{\perp}\right)$.

Proof. By the conclusion of Prob. 4, one has that $T\left(M_{1}\right) \subset M_{2}$ implies $M_{1}^{\perp} \supset T^{*}\left(M_{2}^{\perp}\right)$.
Now assume $M_{1}^{\perp} \supset T^{*}\left(M_{2}^{\perp}\right)$, where M_{1} and M_{2} are closed subspaces of Hilbert spaces H_{1} and H_{2} respectively, one need to show that $T\left(M_{1}\right) \subset M_{2}$. We use the argument by contradiction. Suppose that $T\left(M_{1}\right)$ is not a subset of M_{2}. Then there exist $0 \neq x \in T\left(M_{1}\right)-M_{2}$, since $0 \in T\left(M_{1}\right) \cap M_{2}$. Note that M_{2} is a closed subspace of Hilbert space H_{2}, it yields that $x=y+z$ for some $y \in M_{2}$ and $0 \neq z \in M_{2}^{\perp}$. Moreover $x=T w$ for some $w \in M_{1}$. Since $M_{1}^{\perp} \supset T^{*}\left(M_{2}^{\perp}\right), T^{*} z \in M_{1}^{\perp}$, it follows from the definition of Hilbert-adjoint operator that

$$
0=\left\langle w, T^{*} z\right\rangle=\langle T w, z\rangle=\langle x, z\rangle=\langle y, z\rangle+\langle z, z\rangle=\langle z, z\rangle
$$

Therefore $z=0$, which is a contradiction.
P200, 6.If $M_{1}=\mathcal{N}(T)=\{x \mid T x=0\}$ in Prob. 4, show that

$$
\text { (a) } \quad T^{*}\left(H_{2}\right) \subset M_{1}^{\perp}, \quad \text { (b) } \quad\left[T\left(H_{1}\right)\right]^{\perp} \subset \mathcal{N}\left(T^{*}\right), \quad \text { (c) } \quad M_{1}=\left[T^{*}\left(H_{2}\right)\right]^{\perp}
$$

Proof.
(a) Note that M_{1} is a closed subspace of Hilbert space H_{1}. Since $T\left(M_{1}\right)=\{0\}$ and $H_{2}=\{0\}^{\perp}$, taking $M_{2}=\{0\}$ in Prob. 4, one has $T^{*}\left(H_{2}\right) \subset M_{1}^{\perp}$.
(b) Let $x \in\left[T\left(H_{1}\right)\right]^{\perp}$. Then, $\langle y, x\rangle=0$ for any $y=T z \in T\left(H_{1}\right)$. It follows from the definition of adjoint operator that

$$
0=\langle T z, x\rangle=\left\langle z, T^{*} x\right\rangle, \quad \text { for any } \quad z \in H_{1}
$$

Therefore, $T^{*} x=0$, i.e. $x \in \mathcal{N}\left(T^{*}\right)$. Hence, (b) is valid.

[^0](c) Taking orthogonal complement in (a) yields that $M_{1} \subset\left[T^{*}\left(H_{2}\right)\right]^{\perp}$, since $M_{1}=\mathcal{N}(T)$ is a closed subspace. It suffice to show that $\left[T^{*}\left(H_{2}\right)\right]^{\perp} \subset M_{1}$. Indeed, let $x \in\left[T^{*}\left(H_{2}\right)\right]^{\perp}$. Then
$$
0=\left\langle x, T^{*} y\right\rangle=\langle T x, y\rangle, \quad \text { for any } \quad y \in H_{2},
$$
which implies that $T x=0$,i.e. $x \in M_{1}=\mathcal{N}(T)$.

[^0]: \dagger Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

