## Suggested Solution to Homework 5

Yu Mei ${ }^{\dagger}$

$\mathbf{P 1 4 0}$, 7. Show that in an inner product space, $x \perp y$ if and only if we have $\|x+\alpha y\|=\|x-\alpha y\|$ for all scalars $\alpha$.

Proof. It follows from the definition of inner product that

$$
\|x+\alpha y\|^{2}=\langle x+\alpha y, x+\alpha y\rangle=\langle x, x\rangle+\bar{\alpha}\langle x, y\rangle+\alpha\langle y, x\rangle+\alpha \bar{\alpha}\langle y, y\rangle=\|x\|^{2}+2 R e(\bar{\alpha}\langle x, y\rangle)+|\alpha|^{2}\|y\|^{2}
$$

Similarly, replacing $\alpha$ by $-\alpha$ above, one has

$$
\|x-\alpha y\|^{2}=\|x\|^{2}-2 \operatorname{Re}(\bar{\alpha}\langle x, y\rangle)+|\alpha|^{2}\|y\|^{2}
$$

Then, $\|x+\alpha y\|=\|x-\alpha y\|$ for all scalars $\alpha$ if and only if $\operatorname{Re}(\bar{\alpha}\langle x, y\rangle)=0$ for all $\alpha$. Taking $\alpha=1$ and $\alpha=i$ respectively, we conclude that $\langle x, y\rangle=0$, i.e. $x \perp y$.

P167, 7. Let $\left(e_{k}\right)$ be an orthonormal sequence in a Hilbert space $H$. Show that for every $x \in H$, the vector

$$
y=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}
$$

exists in $H$ and $x-y$ is orthogonal to every $e_{k}$.
Proof. From the Bessel inequality in Theorem 3.4-6, we see that, for every $x \in H$, the series

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

converges. So, $y=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$ exists in $H$. Furthermore,

$$
\left\langle x-y, e_{j}\right\rangle=\left\langle x, e_{j}\right\rangle-\left\langle\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}, e_{j}\right\rangle=0
$$

Hence, $x-y$ is orthogonal to $e_{k}$.
P167, 8. Let $\left(e_{k}\right)$ be an orthonormal sequence in a Hilbert space $H$, and let $M=\operatorname{span}\left(e_{k}\right)$. Show that for any $x \in H$ we have $x \in \bar{M}$ if and only if $x$ can be represented by $x=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ with coefficients $\alpha_{k}=\left\langle x, e_{k}\right\rangle$.

Proof. Assume that $x$ can be represented by $x=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$. Since $x_{n}=\sum_{k=1}^{n}\left\langle x, e_{k}\right\rangle e_{k} \in M$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, we have $x \in \bar{M}$. On the other hand, assume $x \in \bar{M}$. Set $y=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$. It follows from Q7 above that $x-y \perp e_{k}$. By the continuity of inner product, we have $x-y \perp \bar{M}$. It is clear that $x-y \in \bar{M}$. So, $x-y \in \bar{M} \cap \bar{M}^{\perp}=\{0\}$. That is, $x=y=\sum_{k=1}^{\infty}\left\langle x, e_{k}\right\rangle e_{k}$.

P175, 4. Derive from (3) the following formula (which is often called the Parseval relation)

$$
\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}
$$

$\dagger$ Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

Proof. If the Parseval relation (3) shown as

$$
\sum_{k}\left|\left\langle x, e_{k}\right\rangle\right|^{2}=\|x\|^{2}
$$

holds for any $x$ in Hilbert space $H$, then for any $x, y$, we have $\|x+y\|^{2}=\sum_{k}\left|\left\langle x+y, e_{k}\right\rangle\right|^{2}$. Note that

$$
\|x+y\|^{2}=\|x\|^{2}+\langle x, y\rangle+\langle y, x\rangle+\|y\|^{2}=\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}
$$

and

$$
\begin{aligned}
\sum_{k}\left|\left\langle x+y, e_{k}\right\rangle\right|^{2} & =\sum_{k}\left(\left\langle x, e_{k}\right\rangle+\left\langle y, e_{k}\right\rangle\right) \overline{\left(\left\langle x, e_{k}\right\rangle+\left\langle y, e_{k}\right\rangle\right)} \\
& =\sum_{k}\left|\left\langle x, e_{k}\right\rangle\right|^{2}+\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}+\left\langle y, e_{k}\right\rangle \overline{\left\langle x, e_{k}\right\rangle}+\left|\left\langle x, e_{k}\right\rangle\right|^{2} \\
& =\|x\|^{2}+2 R e\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}+\|y\|^{2}
\end{aligned}
$$

Then, $\operatorname{Re}\langle x, y\rangle=\operatorname{Re}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. Replacing $y$ by $i y$, we have

$$
-\operatorname{Im}\langle x, y\rangle=\operatorname{Re}\langle x, i y\rangle=\operatorname{Re}\left\langle x, e_{k}\right\rangle \overline{\left\langle i y, e_{k}\right\rangle}=-\operatorname{Im}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}
$$

Therefore, $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$.
P175, 5 Show that an orthonormal family $\left(e_{\kappa}\right), \kappa \in I$, in a Hilbert space $H$ is total if and only if the relation in Prob. 4 holds for every $x$ and $y$ in $H$.

Proof. As shown in Prob. 4,

$$
\langle x, y\rangle=\sum_{\kappa}\left\langle x, e_{\kappa}\right\rangle \overline{\left\langle y, e_{\kappa}\right\rangle} \quad \text { if and only if } \quad\|x\|^{2}=\sum_{\kappa \in I}\left|\left\langle x, e_{\kappa}\right\rangle\right|^{2}
$$

By Theorem 3.6-3, Hilbert space $H$ is total if and only if the relation $\|x\|^{2}=\sum_{\kappa \in I}\left|\left\langle x, e_{\kappa}\right\rangle\right|^{2}$ holds for every $x$ so that the relation in Prob. 4 holds for every $x$ and $y$ in $H$.

