Suggested Solution to Homework 4

Yu Mei ${ }^{\dagger}$

P126, 13.(Annihilator) Let $M \neq \emptyset$ be any subset of a normed space X. The annihilator M^{a} of M is defined to be the set of all bounded linear functionals on X which are zero everywhere on M. Thus M^{a} is a subset of the dual space X^{\prime} of X. Show that M^{a} is a vector subspace of X^{\prime} and is closed. What are X^{a} and $\{0\}^{a}$.

Proof. For any scalar α, β and $f, g \in M^{a}$,

$$
(\alpha f+\beta g)(x)=\alpha f(x)+\beta g(x)=\alpha \cdot 0+\beta \cdot 0=0, \forall x \in M
$$

Thus, $\alpha f+\beta g \in M^{a}$. So, M^{a} is a vector subspace of X^{\prime}.
Let $f \in \overline{M^{a}}$. Then, there exists a sequence of bounded linear functionals $\left\{f_{n}\right\} \subset M^{a}$ such that $\lim _{n \rightarrow+\infty} f_{n}=f$. Therefore, for any $x \in M$,

$$
f(x)=\lim _{n \rightarrow+\infty} f_{n}(x)=\lim _{n \rightarrow+\infty} 0=0
$$

which yields that $f \in M^{a}$. So, M^{a} is closed.
By the definition of annihilator,

$$
X^{a}=\left\{f \in X^{\prime} \mid f(x)=0, \forall x \in X\right\}=\{\theta\}, \text { where } \theta \text { is the zero functional on } X \text {. }
$$

$$
\{0\}^{a}=\left\{f \in X^{\prime} \mid f(0)=0\right\}=X^{\prime}, \text { since every bounded linear functional maps } 0 \in X \text { to be } 0
$$

P238, 9.(Annihilator) Let X and Y be normed spaces, $T: X \rightarrow Y$ a bounded linear operator and $M=\overline{\mathscr{R}(T)}$, the closure of the range of T. Show that

$$
M^{a}=\mathscr{N}\left(T^{\times}\right)
$$

Proof. On the one hand, let $f \in M^{a} \subset Y^{\prime}$, then

$$
\left(T^{\times} f\right)(x)=f(T x)=0, \quad x \in X \quad \text { such that } T x \in \mathscr{R}(T) \subseteq M
$$

So, $f \in \mathscr{N}\left(T^{\times}\right)$which yields that $M^{a} \subseteq \mathscr{N}\left(T^{\times}\right)$. On the other hand, let $g \in \mathscr{N}\left(T^{\times}\right)$, then, for any $y \in M$, there exists a sequence of $\left\{x_{n}\right\} \in X$ such that $y=\lim _{n \rightarrow+\infty} T x_{n}$. Since $g \in \mathscr{N}\left(T^{\times}\right)$is continuous, we have

$$
g(y)=g\left(\lim _{n \rightarrow+\infty} T x_{n}\right)=\lim _{n \rightarrow+\infty} g\left(T x_{n}\right)=\lim _{n \rightarrow+\infty}\left(T^{\times} g\right)\left(x_{n}\right)=0
$$

So, $g \in M^{a}$ which yields that $\mathscr{N}\left(T^{\times}\right) \subseteq M^{a}$.
Therefore, $M^{a}=\mathscr{N}\left(T^{\times}\right)$.
P239, 10. Let B be a subset of the dual space X^{\prime} of a normed space X. The annihilator ${ }^{a} B$ of B is defined to be

$$
{ }^{a} B=\{x \in X \mid f(x)=0 \text { for all } f \in B\} .
$$

Show that, in the above problem,

$$
\mathscr{R}(T) \subset^{a} \mathscr{N}\left(T^{\times}\right)
$$

[^0]What does this mean with respect to the task of solving an equation $T x=y$?
Proof. Let $y=T x \in \mathscr{R}(T)$. Then, for any $f \in \mathscr{N}\left(T^{\times}\right)$, since $T^{\times} f=0$, we have

$$
f(y)=f(T x)=\left(T^{\times} f\right)(x)=0
$$

which yields that $y \in^{a} \mathscr{N}\left(T^{\times}\right)$. So, $\mathscr{R}(T) \subset^{a} \mathscr{N}\left(T^{\times}\right)$.
This means that a necessary condition for the existence of solution to $T x=y$ is that $f(y)=0, \forall f \in$ $\mathscr{N}\left(T^{\times}\right)$.

[^0]: \dagger Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

