Suggested Solution to Homework 2

Yu Mei[†]

P71, 12. A seminorm on a vector space X is a mapping $p: X \to \mathbf{R}$ satisfying (N1), (N3), (N4) in Sec. 2.2. Show that

$$p(0) = 0,$$

$$|p(x) - p(y)| \le p(x, y)$$

(Hence if p(x) = 0 implies x = 0, then p is a norm.)

Proof. The property (N3) yields that, for any $\alpha \in \mathbf{R}$,

$$p(0) = p(\alpha 0) = |\alpha|p(0)$$

So, p(0) = 0.

It follows from the property (N4) that, for any $x, y \in X$,

$$p(y) = p(y - x + x) \le p(y - x) + p(x).$$

Similarly,

$$p(x) \le p(x-y) + p(y)$$

Hence, $|p(x) - p(y)| \le p(x - y)$, where (N3) has been used.

P71, 13. Show that in Prob. 12, the elements $x \in X$ such that p(x) = 0 form a subspace N of X and a norm on X/N(c.f. Prob. 14, Sec. 2.1) is defined by $\|\hat{x}\|_0 = p(x)$, where $x \in \hat{x}$ and $\hat{x} \in X/N$. **Proof.**

(1) For any $x, y \in N$ (i.e. p(x) = p(y) = 0), it follows from (N1), (N4) and (N3) that

$$0 \le p(\alpha x + \beta y) \le p(\alpha x) + p(\beta y) = |\alpha|p(x) + |\beta|p(y) = 0, \quad \alpha, \beta \in \mathbf{R}.$$

So, $\alpha x + \beta y \in N$ which implies that N is a subspace of X.

(2) First, for any $x_1, x_2 \in \hat{x}$, there exist $n_1, n_2 \in X$ such that $x_1 = x + n_1, x_2 = x + n_2$. Then,

$$|p(x_1) - p(x_2)| \le |p(x_1 - x_2)| = |p(n_1 - n_2)| = 0,$$

since N is a subspace. So, $p(x_1) = p(x_2)$, i.e. $\|\hat{x}\|_0 = p(x)$ is well-defined, which is independent of the choice of represent element x. Now, we verify that $\|\cdot\|_0$ satisfies (N1)-(N4):

(N1) Since $p(x) \ge 0$, $\|\hat{x}\|_0 \ge 0$. (N2) If $\|\hat{x}\|_0 = 0$, then p(x) = 0, so that $x \in N$. Hence $\hat{x} = N$, i.e. $\hat{x} = \hat{0} \in X/N$. (N3) Since $\alpha \hat{x} = \alpha x + N$, it holds that, for some $n \in N$,

$$\|\alpha \hat{x}\|_{0} = p(\alpha x + n) = p(\alpha (x + n/\alpha)) = |\alpha| p(x + n/\alpha) = |\alpha| \|\hat{x}\|_{0}, \quad for \ \alpha \neq 0.$$

It is clear that, for $\alpha = 0$,

$$\|0\hat{x}\|_0 = 0 = 0\|\hat{x}\|_0.$$

(N4) For any $\hat{x} = x + N$, $\hat{y} = y + N$, $\hat{x} + \hat{y} = x + y + N$. Then, $\|\hat{x} + \hat{y}\|_0 = p(x + y) \le p(x) + p(y) = \|\hat{x}\|_0 + \|\hat{y}\|_0.$ [†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

Functional Analysis

P101, 5. Show that the operator $T : \ell^{\infty} \to \ell^{\infty}$ defined by $y = (\eta_j) = Tx, \eta_j = \xi_j/j, x = (\xi_j)$, is linear and bounded.

Proof. For any $x_1 = (\xi_j^1), x_2 = (\xi_j^2),$

$$T(\alpha x_1 + \beta x_2) = ((\alpha \xi_j^1 + \beta \xi_j^2)/j) = (\alpha \xi_j^1/j) + (\beta \xi_j^2/j) = \alpha T x + \beta T y, \text{ for } \alpha, \beta \in \mathbf{R}$$

So, T is linear.

On the other hand, since $\xi_j/j \leq \xi_j$ for any $j \in \mathbb{N}^+$,

$$||Tx||_{\ell^{\infty}} = \sup_{j \ge 1} |\xi_j/j| \le \sup_{j \ge 1} |\xi_j| = ||x||_{\ell^{\infty}}$$

So, T is bounded.

P101, 9. Let $T: C[0,1] \to C[0,1]$ be defined by

$$y(t) = \int_0^t x(\tau) d\tau.$$

Find $\mathscr{R}(T)$ and $T^{-1}: \mathscr{R}(T) \to C[0,1]$. Is T^{-1} linear and bounded?

Proof. By the Fundamental Theorem of Calculus, one has

 $\mathscr{R}(T) = \{y(t) | y(t) \in C^1[0,1], y(0) = 0\} \subset C[0,1].$

and $T^{-1}: \mathscr{R}(T) \to C[0,1]$ is

$$T^{-1}y(t) = y'(t).$$

Since the differentiation is linear, so is T^{-1} . But T^{-1} is unbounded. Indeed, for $y_n(t) = t^n, t \in [0, 1], n \in \mathbb{N}^+$, it is clear that

 $y_n(t) \in \mathscr{R}(T) \subset C[0,1], \text{ and } \|y_n(t)\|_{C_0} = 1, \text{ for any } n \in \mathbb{N}^+,$

where $||f(t)||_{C_0} := \sup_{t \in [0,1]} |f(t)|$ for any $f(t) \in C[0,1]$. However,

$$||T^{-1}(y_n)||_{C_0} = ||y'_n(t)||_{C_0} = ||nt^{n-1}||_{C_0} = n \to +\infty, \ as \ n \to +\infty.$$

Hence, T^{-1} is not bounded.

2