Suggested Solution to Homework 1

Yu Mei ${ }^{\dagger}$

P70, 3. In ℓ^{∞}, let Y be the subset of all sequences with only finitely many nonzero terms. Show that Y is a subspace of ℓ^{∞} but not a closed subspace.

Proof.
(1) Let $x=\left\{\xi_{j}\right\}, y=\left\{\eta_{j}\right\}$ be any two elements in $Y \subset \ell^{\infty}$. Then there exist $N \in \mathbb{N}^{+}$such that

$$
\xi_{j}=\eta_{j}=0, \quad \forall j \geq N
$$

otherwise x, y has infinitely many nonzero terms. Moreover, for any $j,\left|\xi_{j}\right| \leq C_{x}$ and $\left|\eta_{j}\right| \leq C_{y}$ for some nonnegetive constants C_{x}, C_{y} since $x, y \in \ell^{\infty}$. Hence, for any $\alpha, \beta \in \mathbb{R}$,

$$
\alpha \xi_{j}+\beta \eta_{j}=0, \quad \forall j \geq N ; \quad\left|\alpha \xi_{j}+\beta \eta_{j}\right| \leq|\alpha| C_{x}+|\beta| C_{y}, \quad \forall j \in \mathbb{N}^{+},
$$

which implies that $\alpha x+\beta y \in Y$. So, Y is a subspace of ℓ^{∞}.
(2) Y is not a closed subspace. For example, let x_{n} be a sequence such that

$$
x_{j}^{(n)}= \begin{cases}1 / j, & j \leq n, \\ 0, & j>n .\end{cases}
$$

i.e. $x_{n}=\left\{1, \cdots, \frac{1}{n}, 0, \cdots\right\}$. It is clear that $x_{n} \in Y$. Set x be a sequence in ℓ^{∞} such that $x_{j}=\frac{1}{j}$. Thus,

$$
\left\|x_{n}-x\right\|_{\ell \infty}=\frac{1}{n+1} \rightarrow 0, \text { as } n \rightarrow+\infty
$$

But $x \notin Y$ since it has infinitely many nonzero terms.
P71, 7. Show that convergence of $\left\|y_{1}\right\|+\left\|y_{2}\right\|+\left\|y_{3}\right\|+\cdots$ may not imply convergence of $y_{1}+y_{2}+y_{3}+\cdots$.
Proof. Consider Y in the above problem. Set $y_{n}=\left\{\eta_{j}^{(n)}\right\} \in Y$ to be a sequence with

$$
\eta_{n}^{(n)}=1 / n^{2}, \eta_{j}^{(n)}=0, \quad \text { for all } j \neq n
$$

Then, for any $n \in \mathbb{N}^{+},\left\|y_{n}\right\|=1 / n^{2}$ which implies that $\sum_{n=1}^{\infty}\left\|y_{n}\right\|=\sum_{n=1}^{\infty} 1 / n^{2}<+\infty$. Set $y=\left\{1,1 / 2^{2}, \cdots, 1 / n^{2}, \cdots\right\}$. Then,

$$
\left\|\sum_{j=1}^{n} y_{j}-y\right\|_{\ell \infty}=\frac{1}{(n+1)^{2}} \rightarrow 0, \text { as } n \rightarrow+\infty
$$

But y has infinitely many nonzero terms, i.e. $\sum_{n=1}^{\infty} y_{n} \notin Y$. So, $\sum_{n=1}^{\infty} y_{n}$ does not converge in Y.
P71, 14, Let Y be a closed subspace of a normed space $(X,\|\cdot\|)$. Show that a norm $\|\cdot\|_{0}$ on X / Y is defined by

$$
\|\hat{x}\|_{0}=\inf _{x \in \hat{x}}\|x\|
$$

where $\hat{x} \in X / Y$, that is, \hat{x} is any coset of Y.
Proof. Recall that $X / Y=\{\hat{x} \mid \hat{x}=x+Y, x \in X\}$ and algebraic operations in X / Y are defined as:

$$
\alpha \hat{x}=\alpha x+Y ; \quad \hat{x}+\hat{z}=x+z+Y .
$$

\dagger Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)
(1) $\|\hat{x}\|_{0}=\inf _{x \in \hat{x}}\|x\|=\inf _{y \in Y}\|x+y\| \geq 0$, since $\|\cdot\|$ is a norm on X.
(2) On the one hand, $\hat{0}=Y$ yields that

$$
\|\hat{0}\|_{0}=\inf _{y \in Y}\|y\|=\|0\|=0
$$

On the other hand, if $\|\hat{x}\|_{0}=0$, then

$$
\inf _{y \in Y}\|x+y\|=\inf _{y \in Y}\|x-y\|=0
$$

which implies $x \in \bar{Y}$. Since Y is a closed subspace, then $\bar{Y}=Y$. Thus, $x \in Y$ so that $\hat{x}=0$. Hence $\|\hat{x}\|_{0}=0$ if and only if $\hat{x}=\hat{0}$
(3) If $\alpha=0$, then $\|\alpha \hat{x}\|_{0}=\inf _{y \in Y}\|0 x+y\|=0$. For any $\alpha \in \mathbb{R}-\{0\}$, it holds that

$$
\|\alpha \hat{x}\|_{0}=\inf _{y \in Y}\|\alpha x+y\|=\inf _{y \in Y}\left\|\alpha\left(x+\frac{y}{\alpha}\right)\right\|=|\alpha| \inf _{y \in Y}\left\|x+\frac{y}{\alpha}\right\|=|\alpha| \inf _{y \in Y}\|x+y\|=|\alpha|\|\hat{x}\|_{0},
$$

since Y is a subspace which yields that $\inf _{y \in Y}\left\|x+\frac{y}{\alpha}\right\|=\inf _{y \in Y}\|x+y\|$.
(4) For any $\hat{x}, \hat{z} \in X / Y$, by the definition of infimum, for any $\varepsilon>0$, there exist $y_{1}, y_{2} \in Y$ such that

$$
\left\|x+y_{1}\right\| \leq\|\hat{x}\|_{0}+\varepsilon,\left\|z+y_{2}\right\| \leq\|\hat{z}\|_{0}+\varepsilon .
$$

Thus,

$$
\left\|x+z+y_{1}+y_{2}\right\| \leq\left\|x+y_{1}\right\|+\left\|z+y_{2}\right\| \leq\|\hat{x}\|_{0}+\|\hat{z}\|_{0}+2 \varepsilon .
$$

which implies that

$$
\|\hat{x}+\hat{z}\|_{0}=\inf _{y \in Y}\|x+z+y\| \leq\|\hat{x}\|_{0}+\|\hat{z}\|_{0}+2 \varepsilon .
$$

Since ε is arbitrary, it holds that

$$
\|\hat{x}+\hat{z}\|_{0} \leq\|\hat{x}\|_{0}+\|\hat{z}\|_{0} .
$$

