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Knapsack problem
Consider a hiker who is going to carry a knapsack with him on
his trip. Items to be put in the knapsack can be chosen among
many items, each of which has a weight and a value to him.
Certainly, he would like to carry with him the maximum amount
of value with total weight less than a prescribed amount.
Let there be n types of items and let

wj = weight of each item of type j ,
vj = value of each item of type j ,
xj = number of items of type j that the hiker carries with him,

b = total weight limitation.

Then the problem becomes

max
n∑

j=1

vjxj

subject to
n∑

j=1

wjxj ≤ b

xj ≥ 0, integers.
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Example

Consider the knapsack problem with b = 8

item 1 2 3
vj 4 6 5
wj 3 8 5

v1

w1
=

4
3
,

v2

w2
=

6
8
,

v3

w3
=

5
5
,

⇒ The first type has the greatest value per unit of weight.
⇒ It seems natural to attempt to load as many type-1 items as
possible into the knapsack.
Since the capacity of the knapsack is 8, such an attempt will
then result in the loading combination x1 = 2, x2 = x3 = 0,
which achieves a total value of 8.
Is this loading combination optimal?
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Dynamic programming formulation

(i) OPTIMAL VALUE FUNCTION:

S(k , y) = maximum value obtained by using only the
items of types 1,2, · · · , k , when the total
weight limitation is y , for 1 ≤ k ≤ n and 0 ≤ y ≤ b.

(ii) RECURRENCE RELATION:

Relation I:

S(k , y) = max
j=0,1,...,by/wkc

{vk × j + S(k − 1, y − wk × j)},

Relation II:

S(k , y) = max{S(k − 1, y);S(k , y − wk ) + vk}.
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Dynamic Programming formulation

(iii) OPTIMAL POLICY FUNCTION:

P(k , y) = the maximum index of the types of items used in
S(k , y), i.e. if P(k , y) = j , then xj ≥ 1, or items of
type j are used in S(k , y) and xq = 0 for all q > j .

The values of P(k , y) can be determined as follows:

P(1, y) = 0 if S(1, y) = 0;
P(1, y) = 1 if S(1, y) 6= 0;

and

P(k , y) =

{
P(k − 1, y) if S(k − 1, y) > S(k , y − wk ) + vk

k if S(k − 1, y) ≤ S(k , y − wk ) + vk .
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Dynamic Programming formulation

(iv) BOUNDARY CONDITIONS:

S(0, y) = 0 for all y (0 ≤ y ≤ b);
S(k ,0) = 0 for all k (0 ≤ k ≤ n), and

(v) ANSWER SOUGHT: S(n,b) will be the maximum value.
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Example

Consider the knapsack problem with b = 10, v1 = 1, v2 = 3,
v3 = 5, v4 = 9, w1 = 2, w2 = 3, w3 = 4 and w4 = 7.

We summarize the DP computation in the following table.
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Computational efficiency

The computational requirements of this approach are nb
additions and comparisons.
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Two Dimensional Knapsack Problem

Assume that we are given a large rectangular board and
that we would like to cut the large board into small
rectangles that will be sold at the market, how should we
cut the large board so that we get the maximum profit?

The problem is called a stock-cutting problem which has
wide applications in various industries such as garment,
steel, lumber, transportation, etc.
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We now consider only a more restricted way of cutting.
Two-stage cuttings:

(i) by horizontal lines all the way across the board followed by
vertical cuttings on each of the horizontal strips as shown
in Figure (a).

(ii) by vertical lines all the way across the board followed by
horizontal cuttings on each of the vertical strips as shown
in Figure (b).
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Suppose that we are given the values vi of n types of
rectangles, where `i is the (horizontal) length of a type i
rectangle and wi the (vertical) width.

We shall cut the large board in two stages such that the
total value of the resulting rectangles is a maximum.

Further assume that the rectangles can not be rotated.

If a resulting rectangle is not exactly `i × wi for any i , we
shall assume that the rectangle has value equal to the
maximum of the values of all rectangles that can fit inside
it. More specifically, let us consider the following numerical
example.
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Example
Let the large board be of size L = 14, W = 11 and the small
rectangles be

v1 = $6, `1 = 7, w1 = 2
v2 = $7, `2 = 5, w2 = 3
v3 = $9, `3 = 4, w3 = 5.

One way of cutting by horizontal lines and then vertical lines is
shown in Figure (a) with a total value of $63, while another way
of cutting by vertical lines and then horizontal lines is shown in
Figure (b) with a total value of $64.
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Example
Let the large board be of size L = 14, W = 11 and the small
rectangles be

v1 = $6, `1 = 7, w1 = 2
v2 = $7, `2 = 5, w2 = 3
v3 = $9, `3 = 4, w3 = 5.

To get the optimum pattern of cutting horizontally and then
vertically, we consider the problem of cutting vertically a board
of length 14 and width wk . If Fk (x) denotes the optimum value
obtained when the width is wk and the length is x (note that the
rectangles are so ordered that the indices are increasing with
the widths of the rectangles), then clearly

Fk (x) = max
∑k

j=1 vjxj

subject to
∑k

i=1 `ixi ≤ x ,
xi ≥ 0 integers.

This problem can be solved by the knapsack algorithm of the
previous section. In fact, we can show that F1(14) = 12,
F2(14) = 14, and F3(14) = 27).
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Example

Let the large board be of size L = 14, W = 11 and the small
rectangles be

v1 = $6, `1 = 7, w1 = 2
v2 = $7, `2 = 5, w2 = 3
v3 = $9, `3 = 4, w3 = 5.

The next question is “How many of these strips worth $12, $14,
and $27 should be produced?” This is again a one-dimensional
knapsack problem, namely:

max 12y1 + 14y2 + 27y3

subject to 2y1 + 3y2 + 5y3 ≤ 11
yi ≥ 0 integers.

Show that the optimum value is $63.
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Exercise

Consider the optimum pattern of cutting vertically and then
horizontally. It can be obtained in a similar manner. Note that
we have to reorder the rectangles so that the indices are
increasing with the lengths of the rectangles.
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