
Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.1

Lecture 3
Branch-and-Bound Algorithm
MATH3220 Operations Research and Logistics
Jan. 13, 2015

Pan Li
The Chinese University of Hong Kong

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.2

Agenda

1 Complete Enumeration

2 Branch-and-Bound Algorithm

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.3

Is IP easy to solve?

At the first glance, IP may be easy to solve since the
number of feasible solution is smaller and is limited. But...

If the feasible region is bounded, the number of feasible
solution is finite. But, the number is simply too large
(exponential growth). With n variables, there are 2n

solutions to be considered.

The corner point is (generally) no longer feasible.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.4

Overview

Enumerating all solution is too slow for most problems.

Branch and bound starts the same as enumerating, but it
cuts out a lot of the enumeration whenever possible.

Branch and bound is the starting point for all solution
techniques for integer programming.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.5

Capital Budgeting Example

investment budget = $14,000

Investment 1 2 3 4 5
Cash Required $5,000 $4,000 $7,000 $3,000 $6,000
Present Value $12,000 $11,000 $13,000 $8,000 $15,000

max 12x1 + 11x2 + 13x3 + 8x4 + 15x5
s.t. 5x1 + 4x2 + 7x3 + 3x4 + 6x5 ≤ 14

xj ∈ {0,1} for each j = 1 to 5

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.6

Complete enumeration

Systematically considers all possible values of the
decision variables. - If there are n binary variables, there

are 2n different ways.

Usual idea: iteratively break the problem into two.
At the first iteration, we consider separately the case that
x1 = 0 and x1 = 1.

Each node of the tree represents the original problem plus
additional constraints.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.7

An Enumeration Tree

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.8

An Enumeration Tree

We refer to node 2 and 3 as the children of node 1 in the
enumeration tree.

We refer to node 1 as the parent of node 2 and 3.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.9

An Enumeration Tree

Which of the following is false?
1 IP(1) is the original integer program.
2 IP(3) is obtained from IP(1) by adding the constraint

x1 = 1.
3 It is possible that there is some solution that is feasible for

both IP(2) and IP(3).

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.10

An Enumeration Tree

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.11

An Enumeration Tree

Number of leaves of the tree : 32. ⇒ If there are n variables,
the number of leaves is 2n.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.12

On complete enumeration

Suppose that we could evaluate 1 billion solutions per
second.

Let n = number of binary variables.

Solution times
- n = 30, 1 second
- n = 40, 17 minutes
- n = 50, 11.6 days
- n = 60, 31 years
- n = 70, 31,000 years

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.13

How to solve large size integer program faster?

Only a tiny fraction of the feasible solutions actually need to be
examined.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.14

Subtrees of an enumeration tree

If we can eliminate an entire subtree in one step, we can
eliminate a fraction of all complete solutions at a single step.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.15

Branch-and-Bound Algorithm

Branch-and-bound algorithm are the most popular
methods for solving integer programming problems.

Basic Idea: Enumeration procedure can always find the
optimal solution for any bounded IP problem. But it takes
too much time. So, we consider the partial enumeration.
That is, divide and conquer.

They enumerate the entire solution space but only
implicity; hence they are called
implicit enumeration algorithms.

Bounding, branching, and fathoming are the three
components of Branch-and-bound technique.

Running time grows exponentially with the problem size,
but small to moderate size problems can be solved in
reasonable time.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.16

A simpler problem to work with

Max 24x1 + 2x2 + 20x3 + 4x4

s.t. 8x1 + x2 + 5x3 + 4x4 ≤ 9 IP(1)
xi ∈ {0,1} for i = 1 to 4

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.17

LP Relaxation

LP Relaxation: The LP obtained by omitting all integer or 0-1
constraints on variables is called the LP relaxation of IP.

IP:

max (or min) cx
subject to Ax ≤ b

x ≥ 0 and integers

LP Relaxation:

max (or min) cx
subject to Ax ≤ b

x ≥ 0

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.18

IP and LP Relaxation

Since LP relaxation is less constrained than IP, the following
are immediate:

If IP is a minimization problem, the optimal objective value
for LP relaxation is less than or equal to the optimal
objective for IP.

If IP is a maximization, the optimal objective value for LP
relaxation is greater than or equal to that of IP.

If LP relaxation is infeasible, then so is IP.

If LP relaxation is optimized by integer variables, then that
solution is feasible and optimal for IP.

So, solving LP relaxation does give some information: it gives a
bound on the optimal value, and if we are lucky, may give the
optimal solution to IP.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.19

Why can’t we solve the LP relaxation and round it up/down to
get the required integer solution?

Rounding does not guarantee the feasibility.

Max z = x2
s.t. −x1 + x2 ≤ 0.5

x1 + x2 ≤ 3.5
x1, x2 ≥ 0 and
are integers

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.20

Why can’t we solve the LP relaxation and round it up/down to
get the required integer solution?

Rounding does not guarantee the optimality.

Max z = x1 + 5x2
s.t. x1 + 10x2 ≤ 20

x1 ≤ 2
x1, x2 ≥ 0 and
are integers

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.21

Branch-and-Bound

The essential idea: search the enumeration tree, but at each
node:

1 Solve the LP relaxation at the node

2 Eliminate the subtree (fathom it) if

1 The solution is integer (there is no need to go further) or

2 There is no feasible solution or

3 The best solution in the subtree cannot be as good as the
best available solution (the incumbent).

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.22

Bounding - For each problem or subproblem (will define
later), we need to obtain a bound on how good its best
feasible solution can be.

Usually, the bound is obtained by solving the LP relaxation.

LP relaxation of IP(1):

Max 8x1 + 11x2 + 6x3 + 4x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14 LP(1)
0 ≤ xi ≤ 1 for i = 1 to 4

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.23

Bounding - For each problem or subproblem (will define
later), we need to obtain a bound on how good its best
feasible solution can be.

Usually, the bound is obtained by solving the LP relaxation.

LP relaxation of IP(1):

Max 8x1 + 11x2 + 6x3 + 4x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14 LP(1)
0 ≤ xi ≤ 1 for i = 1 to 4

The LP relaxation of the knapsack problem can be solved
using a "greedy algorithm".

Think of the objective in terms of dollars, and consider the
constraint as bound on the weight.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.24

Solving the LP relaxation (LP(1))

Max 8x1 + 11x2 + 6x3 + 4x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14 LP(1)
0 ≤ xi ≤ 1 for i = 1 to 4

item 1 2 3 4
unit value $1.6 $1.571 $1.5 $1.333

Consider the unit value of the four items. Put items into the
knapsack in decreasing order of unit value. What do you get?

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.25

Solving the LP relaxation (LP(1))

Max 8x1 + 11x2 + 6x3 + 4x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14 LP(1)
0 ≤ xi ≤ 1 for i = 1 to 4

item 1 2 3 4
unit value $1.6 $1.571 $1.5 $1.333

Consider the unit value of the four items. Put items into the
knapsack in decreasing order of unit value. What do you get?

⇒ (x1, x2, x3, x4) = (1,1,0.5,0), with z = 22
⇒ No integer solution will have value lager than 22.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.26

Branching - partitioning the entire set of feasible solutions
into smaller and smaller subsets.

Set " No incumbent with objective value z∗ = −∞".
x3 - branching variable

Note that any optimal solution to the overall problem must be
feasible to one of the subproblems.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.27

More on the incumbent

The incumbent is the feasible solution for the IP. It is the
best solution so far in the B&B search.

As Branch-and-bound proceeds, new solutions will be
evaluated. If a new solution is better than the current
incumbent, it replaces the current incumbent.

So, the incumbent is always the best solution seen so far.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.28

Solving the LP relaxation (LP(2))

IP(2): x3 = 0

Max 8x1 + 11x2 + 6× 0 + 4x4

s.t. 5x1 + 7x2 + 4× 0 + 3x4 ≤ 14 LP(2)
0 ≤ xi ≤ 1 for i = 1,2,4

item 1 2 3 4
unit value $1.6 $1.571 $0 $1.333

⇒ (x1, x2, x3, x4) = (1,1,0, 2
3), with z = 21 2

3
⇒ No integer solution for this subproblem will have value lager
than 21, but we don’t have any feasible integer solution.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.29

Solving the LP relaxation (LP(3))

IP(3): x3 = 1

Max 8x1 + 11x2 + 6× 1 + 4x4

s.t. 5x1 + 7x2 + 4× 1 + 3x4 ≤ 14 LP(3)
0 ≤ xi ≤ 1 for i = 1,2,4

item 1 2 4
unit value $1.6 $1.571 $1.333

⇒ (x1, x2, x3, x4) = (1, 5
7 ,1,0), with z = 21 6

7
⇒ No integer solution for this subproblem will have value lager
than 21, but we don’t have any feasible integer solution.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.30

Enumeration Tree

We do not have any feasible integer solution. So, we will take a
subproblem and branch on one of its variables.
In general, we will choose the subproblem as follows:

choose an active subproblem, which so far only means we
have not chosen before, and
choose the subproblem with the highes solution value (for
maximization) (lowest for minimization).

⇒ Choose IP(3) and branch on x2.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.31

Enumeration Tree

IP(4): Feasible integer solution with value 18. ⇒ No further
branching on subproblem 4 is needed.
⇒ Fathoming case 1: The optimal solution for its LP relaxation
is integer.
⇒ If this solution is better than the incumbent, it becomes the
new incumbent.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.32

Enumeration Tree

IP(6): Feasible integer solution with value 21 (> 18).
⇒ No further branching on subproblem 6 is needed.
(Fathoming case 1).
⇒ Update the incumbent and its value.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.33

Enumeration Tree

IP(7): Infeasible solution
⇒ No further branching on subproblem 7 is needed.
⇒ Fathoming case 2: The LP relaxation has no feasible
solutions.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.34

Enumeration Tree

Only one active subproblem left is subproblem 2 with its bound
= 21 2

3 .
Since the optimal objective value of the original problem is
integer, if the best value solution for a node is at most 21 2

3 ,
then we know the best bound is at most 21. (Other bounds can
also be rounded down.)

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.35

Enumeration Tree

Only one active subproblem left is subproblem 2 with its bound
= 21.
⇒ we fathom this subproblem.
⇒ Fathoming case 3: Subproblem’s bound ≤ z.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.36

Enumeration Tree

There are no longer any active subproblems, so the optimal
solution value is 21.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.37

Branch-and-Bound Algorithm

Branch-and-bound strategy:
Solve the linear relaxation of the problem.
If the solution is integer, then we are done.
Otherwise, create two new subproblems by branching on a
fractional variable.

A node (subproblem) is not active when any of the following
occurs:

1 The node is being branched on;

2 The solution is integral;

3 The subproblem is infeasible;

4 You can fathom the subproblem by a bounding argument.

Choose an active node and branch on a fractional variable.
Repeat until there are no active subproblems.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.38

A branch-and-bound algorithm for mixed integer
programming

Max z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi , for i = 1, . . . ,m

xj ≥ 0, for j = 1, . . . ,n
xj is integer, for j = 1, . . . , I (I ≤ n)

Modifications:
branching variables: only variables considered are the
integer-restricted variables that have a noninteger value in
the optimal solution for the LP relaxation of the current
subproblem.
values assigned to the branching variable for creating the
new smaller subproblems:

xj ≤ bx∗
j c and xj ≥ dx∗

j e

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.39

Example

max z = −7x1 − 3x2 − 4x3

s.t.

 x1 + 2x2 + 3x3 −x4 = 8,
3x1 + x2 + x3 −x5 = 5,
x1, x2, · · · , x5 ≥ 0 and integer.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.40

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.41

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.42

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.43

Lessons learned

Branch-and-bound can speed up the search. - Only 7
nodes (LPs) out of 16 were evaluated.

Branch-and-bound relies on eliminating subtrees, either
because the IP at the node was solved, or else because
the IP solution cannot possibly be optimum.

Complete enumerations not possible (because the running
time) if there are more than 100 variables. (Even 50
variables would take too long.)

In practice, there are a lot of ways to make
Branch-and-bound even faster.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.44

How to Branch?

We want to divide the current problem into two or more
subproblems that are easier than the original. A commonly
used branching method:

xi ≤ bx∗
i c, xi ≥ dx∗

i e
where x∗

i is a fractional variable.

Which variable to branch?
A commonly used branching rule: Branch the most
fractional variable.

We would like to choose the branching that minimizes the
sum of the solution times of all the created subproblems.

How do we know how long it will take to solve each
subproblem?
Answer: We don’t.
Idea: Try to predict the difficulty of a subproblem.

A good branching rule: The value of the linear
programming relaxation changes a lot!

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.45

Which Node to Select?

An important choice in branch and bound is the strategy
for selecting the next subproblem to be processed.

Goals:
Minimizing overall solution time.
Finding a good feasible solution quickly.

Some commonly used search strategies:
Best First
Depth First
Hybrid Strategies
Best Estimate

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.46

The Best First Approach

One way to minimize overall solution time is to try to
minimize the size of the search tree. We can achieve this
by choosing the subproblem with the best bound (lowest
lower bound if we are minimizing).

Drawbacks of Best First
Doesn’t necessarily find feasible solutions quickly since
feasible solution are "more likely" to be found deep in the
tree.

Node setup costs are high. The linear program being solved
may change quite a bit from one node evaluation to the
next.

Memory usage is high. It can require a lot of memory to
store the candidate list, since the tree can grow "broad".

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.47

The Depth First Approach

The depth first approach is to always choose the deepest
node to process next. Just dive until you prune, then back
up and go the other way.

This avoids most of the problems with best first: The
number of candidate nodes is minimized (saving memory).
The node set-up costs are minimized.

LPs change very little from one iteration to the next.
Feasible solutions are usually found quickly.

Drawback: If the initial lower bound is not very good, then
we may end up processing lots of non-critical nodes.

Hybrid Strategies: Go depth-first until you find a feasible
solution, then do best first search.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.48

Example

Consider the IP(1) in the previous example, an optimal LP
tableau is obtained as in the following table:

x1 x2 x3 x4 x5 solution
x1 1 0 − 1

5
1
5 − 2

5
2
5

x2 0 1 8
5 − 3

5
1
5

19
5

z 0 0 3
5

2
5

11
5 − 71

5

If the constraint x2 ≤ 3 is added, how can we obtain the new
optimal solution from this optimal tableau?

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.49

Example

Consider the IP(1) in the previous example, an optimal LP
tableau is obtained as in the following table:

x1 x2 x3 x4 x5 solution
x1 1 0 − 1

5
1
5 − 2

5
2
5

x2 0 1 8
5 − 3

5
1
5

19
5

z 0 0 3
5

2
5

11
5 − 71

5

If the constraint x2 ≤ 3 is added, how can we obtain the new
optimal solution from this optimal tableau?

Rewrite x2 ≤ 3 as x2 + s = 3, where s is a slack variable.
Hence s = 3− x2 = 3− (19

5 −
8
5 x3 −

(
− 3

5

)
x4 −

(1
5

)
x5), or

s − 8
5 x3 +

3
5 x4 − 1

5 x5 = − 4
5 . We add it to the tableau:

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.50

Example

s − 8
5 x3 +

3
5 x4 − 1

5 x5 = − 4
5

x1 x2 s x3 x4 x5 solution
x1 1 0 0 − 1

4
1
5 − 2

5
2
5

x2 0 1 0 8
5 − 3

5
1
5

19
5

s 0 0 1 − 8
5

3
5 − 1

5 − 4
5

z 0 0 0 3
5

2
5

11
5 − 71

5

The tableau is optimal but not feasible as s = − 4
5 < 0.

We can use the dual simplex method to get the optimal
solution.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.51

Example

x1 x2 s x3 x4 x5 solution
x1 1 0 0 − 1

4
1
5 − 2

5
2
5

x2 0 1 0 8
5 − 3

5
1
5

19
5

s 0 0 1 − 8
5

3
5 − 1

5 − 4
5

z 0 0 0 3
5

2
5

11
5 − 71

5

Leaving variable: s
Entering variable: xj is selected such that |zj/yjs| is the
minimum amongst all yjs < 0. Since

min
{∣∣∣∣ z3

y3s

∣∣∣∣ , ∣∣∣∣ z5

y5s

∣∣∣∣} = min
{∣∣∣∣ 3/5
−8/5

∣∣∣∣ , ∣∣∣∣ 11/5
−1/5

∣∣∣∣} =
3
8

⇒ The entering variable is x3. Thus, we do pivot operation on
− 8

5 .

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.52

Example

After the pivot operation on − 8
5 , we get

x1 x2 s x3 x4 x5 solution
x1 1 0 − 1

8 0 1
8 − 3

8
1
2

x2 0 1 1 0 0 0 3

x3 0 0 − 5
8 1 − 3

8
1
8

1
2

z 0 0 3
8 0 5

8
17
8 − 29

2

which is both optimal and primal feasible. Hence we obtain the
optimal solution x1 = 1

2 , x2 = 3, x3 = 1
2 , x4 = x5 = 0 at node 1.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.53

Rounding down to improve bounds

If all cost coefficients of a maximization problem are integer
valued, then the optimal objective value (for the IP) is integer.
And zIP(j) ≤ bzLP(j)c.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.54

A bad example

Max 2x1 + 2x2 + 2x3 + . . .+ 2x100

s.t. 2x1 + 2x2 + 2x3 + . . .+ 2x100 ≤ 101
xi ∈ {0,1} for i = 1,2, . . . ,100.

What would happen if we use branch-and-bound as described
before?

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.55

Adding constraints to improve bounds

A constraint is called a valid constraint if it is satisfied by all
integer solutions of an IP (but possibly not the linear
solution of its LP relaxation).

Adding a valid inequality might improve the bound.

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.56

Max 4x1 + 3x2 + 3x3 + 3x4

s.t. 2x1 + 2x2 + 2x3 + 2x4 ≤ 3 A
xi ∈ {0,1} for i = 1, . . . ,4

Max 4x1 + 3x2 + 3x3 + 3x4

s.t. x1 + x2 + x3 + x4 ≤ 1.5 B
xi ∈ {0,1} for i = 1, . . . ,4

Max 4x1 + 3x2 + 3x3 + 3x4

s.t. x1 + x2 + x3 + x4 ≤ 1 C
xi ∈ {0,1} for i = 1, . . . ,4

Opt LP(A)

x∗ = (1,0.5,0,0)
zLP = 5.5

Opt LP(C)

x∗ = (1,0,0,0)
zLP = 4

The solution for LP(C) is optimal for IP(A)!

Branch-and-Bound
Algorithm

Complete Enumeration

Branch-and-Bound
Algorithm

3.57

Summary

Making Branch-and-bound work well in practice requires
lots of good ideas.

There was not time in class to cover all of these ideas in
any detail.

The best idea for speeding up Branch-and-bound is to add
valid inequalities, or improve the inequalities.

	Complete Enumeration
	Branch-and-Bound Algorithm

