Lecture 12
 Network Flow Problems

MATH3220 Operations Research and Logistics

Mar. 24, 2015

Pan Li
The Chinese University of Hong Kong

Agenda

(1) Maximal Flow Problem

(2) Methods for Maximal-Flow Problems

Maximal Flow Problem
Methods for Maximal-Flow Problems

Maximal Flow and
Minimal Cut
LP Interpretation of Max-flow Min-cut Problem
(3) Maximal Flow and Minimal Cut

4 LP Interpretation of Max-flow Min-cut Problem

Maximal Flow Problem

Definition

Let Q be the set of all distinct ordered pairs of elements of a set V, that is,

$$
Q=\left\{\left(x_{i}, x_{j}\right) \mid x_{i} \in V, x_{j} \in V\right\}
$$

The pair $G=(V, E)$ with $E \subset Q$, is called a directed graph, the elements of E are called directed edges.

Definition

An incidence matrix can be defined for a directed graph. Let $A=\left(a_{i j}\right), i=1, \cdots,|V|, j=1, \cdots,|E|$ be the incidence matrix for a directed graph $G(V, E)$ defined as follows

$$
a_{i j}= \begin{cases}-1 & \text { if } e_{j}=\left(x_{k}, x_{i}\right), k \neq i \tag{1}\\ 1 & \text { if } e_{j}=\left(x_{i}, x_{k}\right), k \neq i, \\ 0 & \text { otherwise }\end{cases}
$$

- The transshipment problem is a special class of network flow problems. To be more specific, we consider the problem of shipping a certain homogeneous commodity from a specified origin, called the source, to a particular destination, called the sink.
- The flow network will generally consist of some intermediate vertex, known as transshipment points, through which the flows are rerouted.
- At the transshipment points we impose the condition of conservation of flow, i.e. what is shipped into it is shipped out.

Example

Consider a flow network given by the following diagram. Vertex s is the source and vertex t is the sink. The number $c_{i j}$ on edge (i, j) represents the capacity of that edge.

Let $f_{i j}$ be the flow in edge (i, j) and f be the total flow from the source s to the sink t. The maximal flow problem is to determine the maximum value of v.

$$
\begin{gather*}
\text { Maximize } \\
\text { subject to }
\end{gather*}\left\{\begin{array}{cl}
v & =0 \tag{2}\\
f_{s 1}+f_{s 2}-v & =0 \\
f_{1 t}+f_{12}-f_{21}-f_{s 1} & =0 \\
f_{21}+f_{2 t}-f_{12}-f_{s 2} & =0 \\
v-f_{1 t}-f_{2 t} & =0
\end{array}\right.
$$

Maximal Flow Problem
Methods for Maximal-Flow Problems

Maximal Flow and Minimal Cut

LP Interpretation of Max-flow Min-cut Problem

The coefficient matrix on the L.H.S. of equations (2) is simply the incidence matrix of this directed graph.

For a general network $N=(V, E)$, constraints (2) and (3) becomes

$$
\begin{gather*}
\sum_{j \in V} f_{i j}-\sum_{j \in V} f_{j i}=\left\{\begin{aligned}
v, & i=s \\
0, & i \neq s, t \\
-v, & i=t
\end{aligned}\right. \tag{4}\\
0 \leq f_{i j} \leq c_{i j}, \quad \forall(i, j) \in E \tag{5}
\end{gather*}
$$

Any set of numbers $\left\{f_{i j}\right\}$ satisfying (4) and (5) is said to be a feasible flow. The value f is called the value of the flow and is sometimes denoted by $v(f)$ or simply v.

Methods for Maximal-Flow Problems

Maximal Flow and Minimal Cut

LP Interpretation of Max-flow Min-cut Problem

Mathematically, a flow, or more precisely an s-t flow, f is a function from E into \mathbb{R}^{+}such that

$$
0 \leq f_{i j} \leq c_{i j}, \quad \forall(i, j) \in E
$$

and

$$
\sum_{\{j \mid(i, j) \in E\}} f_{i j}=\sum_{\{j \mid(i, j) \in E\}} f_{j i}, \quad \forall i \in V, i \neq s, t .
$$

For simplicity, given two subsets S and T of V and an $s-t$ flow f from E into \mathbb{R}^{+}, we use (S, T) to denote the set $\{(i, j) \in E \mid i \in S, j \in T\}$ and

$$
f(S, T) \equiv \sum_{(i, j) \in(S, T)} f_{i j} .
$$

If S equals to a singleton set $\{i\}$, we write $f(\{i\}, T)=f(i, T)$. In particular, $f(i, j)=f_{i j}$. In this notation, conservation of flows (4) become

$$
f(i, V)-f(V, i)=\left\{\begin{align*}
v(f), & i=s \tag{6}\\
0, & i \neq s, t \\
-v(f), & i=t
\end{align*}\right.
$$

where the value of the flow is given by

$$
\begin{equation*}
v(f)=f(s, V)-f(V, s)=f(V, t)-f(t, V) \tag{7}
\end{equation*}
$$

Example

Consider the network below where the numbers on the edges represent the capacities.

An $s-t$ flow of value 4 is drawn on the figures where the flow value is marked by circles. Note that for examples
$f(C, V)=f(V, C)=4$ and $f(D, V)=f(V, D)=0$. Also $f(s, V)=4=f(V, t)$ whereas $f(V, s)=f(t, V)=0$. \qquad

Maximal Flow Problem
Methods for Maximal-Flow Problems

Maximal Flow and Minimal Cut

LP Interpretation of Max-flow Min-cut Problem

Methods for Maximal-Flow Problems

First-label-first-scan Methods

- To find a nearest path from a source s to a sink t.
- At each step of the procedure, every vertex $i \in V$ is either:
i) unlabeled (indicated by blank)
ii) labeled not scanned (indicated by a label $\ell(i)$)
iii) labeled and scanned ($\ell(i)$ followed by an $*$)
- First-label-first-scan Method:
(1) Label vertex s by $\ell(s)=s$.
(2) If vertex t is labeled, an s - t path is obtained by tracing backward from t to s using the labels on the vertices; otherwise go to Step 3.
(3) If all labeled vertices are scanned, there exists no s-t path; otherwise go to Step 4.
(4) Pick the first labeled but unscanned vertex i, label each unlabeled vertex j such that (i, j) is an edge by $\ell(j)=i$. Indicate vertex i as scanned and return to Step 2.

Example

Consider the network:

Maximal Flow Problem
Methods for Maximal-Flow
Problems
Maximal Flow and
Minimal Cut
LP Interpretation of Max-flow Min-cut Problem
An s - t path is $6 \leftarrow 5 \leftarrow 3 \leftarrow 2 \leftarrow 1$.

Flow Augmenting Path Algorithm for Maximal Flow:

Step 1 Find a s-t path with strictly positive flow capacity for each edge in the path. If no such path exists, we are done.

Step 2 Search this path for the edge with the smallest flow capacity, say c^{*}, and increase the flow in this path by c^{*}.

Step 3 Decrease by c^{*} the flow capacity for each edge in this path.

Step 4 Increase by c^{*} the flow capacity in the opposite direction for each edge in the path.

Step 5 Go back to Step 1.

Example

Consider the following network where the numbers on the edges represent the current flow capacities for the forward and the backward directions.

Initially the flow $v=0$; Augmenting path is $1 \rightarrow 2 \rightarrow 3 \rightarrow 6$ with $c^{*}=1$.

$v=1$; Augmenting path is $1 \rightarrow 2 \rightarrow 5 \rightarrow 6$ with $c^{*}=2$.

$v=3$; Augmenting path is $1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 6$ with $c^{*}=1$. Notice that edge $(3,2)$ is a backward edge.

Maximal Flow Problem
Methods for Maximal-Flow Problems

Maximal Flow and Minimal Cut

LP Interpretation of Max-flow Min-cut Problem

$v^{*}=4$; there is no more augmenting paths. Thus the maximal flow f^{*} is given by $f(1,2)=3, f(1,4)=1, f(2,3)=0$, $f(2,5)=3, f(3,6)=1, f(4,3)=1, f(5,6)=3$.

Definition

Let P be an undirected path from s to t. An edge (i, j) on P is said to be a forward edge if it is directed from s to t and backward edge otherwise. P is said to be a flow augmenting path with respect to a given flow f if
(1) $f(i, j)<c_{i j}$ for each forward edge (i, j) on P, and
(2) $f(i, j)>0$ for each backward edge (i, j) on P.

Thus the path $1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 6$ in the last iteration is a flow augmenting path where $3 \rightarrow 2$ is a backward edge.

Maximal Flow Problem
Methods for
Maximal-Flow
Problems
Maximal Flow and Minimal Cut

LP Interpretation of Max-flow Min-cut Problem

Exercise

Consider the network:

Maximal Flow Problem

Methods for Maximal-Flow
 Problems

Maximal Flow and Minimal Cut

LP Interpretation of Max-flow Min-cut Problem

Maximal Flow and Minimal Cut

Definition

Given a network $N=(V, E)$ with source s and $\operatorname{sink} t$. Let X and \bar{X} be two non-empty subsets of V such that $X \cap \bar{X}=\phi$ and $X \cup \bar{X}=V$. If $s \in X$ and $t \in \bar{X}$, then (X, \bar{X}) is called an s - t cut (or simply a cut) of the network N. The capacity of a cut (X, \bar{X}), denoted by $C(X, \bar{X})$, is the sum of the capacities of those edges directed from a vertex in X to a vertex in \bar{X}, i.e.

$$
C(X, \bar{X})=\sum_{(i, j) \in(X, \bar{X})} c_{i j} .
$$

Maximal Flow Problem

Maximal Flow and
Minimal Cut
LP Interpretation of Max-flow Min-cut
Problem

Example

Consider the following network with capacities listed at the corner of the vertices:

$$
\begin{aligned}
& \text { 2 }
\end{aligned}
$$

Maximal Flow Problem

Methods for

 Maximal-Flow ProblemsMaximal Flow and Minimal Cut

LP Interpretation of Max-flow Min-cut Problem

Lemma (1)

Let f be an s-t flow and (X, \bar{X}) an s-t cut, then

$$
v(f)=f(X, \bar{X})-f(\bar{X}, X)=\text { net flow across the s-t cut. }
$$

Proof.

We have by (6) and (7)

$$
\begin{aligned}
v(f) & =f(s, V)-f(V, s) \\
& =f(s, V)-f(V, s)+\sum_{i \in X, i \neq s}[f(i, V)-f(V, i)] \\
& =f(X, V)-f(V, X) \\
& =f(X, \bar{X})+f(X, X)-f(X, X)-f(\bar{X}, X)
\end{aligned}
$$

Maximal Flow Problem
Methods for Maximal-Flow Problems

Maximal Flow and

LP Interpretation of Max-flow Min-cut
Problem

Lemma (2)

Given any s-t flow f and s-t cut (X, \bar{X}), we have $v(f) \leq C(X, \bar{X})$. In particular, we have

$$
\max _{f} v(f) \leq \min _{(X, \bar{X})} C(X, \bar{X}) .
$$

Proof.

Since $f(X, \bar{X}) \leq C(X, \bar{X})$ and $f(\bar{X}, X) \geq 0$, we have

$$
v(f)=f(X, \bar{X})-f(\bar{X}, X) \leq C(X, \bar{X})
$$

Theorem (1)

(Augmentation Algorithm) An s-t flow f is a maximal flow if and only if it admits no flow augmenting path from s to t.

Proof.

If an augmenting path exists, the current flow is clearly not a maximal flow.
Now suppose f does not admit an augmenting path from s to t. Let X be the set of vertices $\{i\}$ including s for which there is an augmenting path from s to i and \bar{X} be the complementary set of vertices, i.e. $\bar{X}=V \backslash X$.
We claim that for all $i \in X$ and $j \in \bar{X}$, we have $f(i, j)=c_{i j}$ and $f(j, i)=0$.
For if $f(i, j)<c_{i j}$, obviously we are allowed to flow from i to j, and hence there will be an augmenting path from s to j. If $f(j, i)>0$, that means we have previously flow from j to i. Now we can form an augmenting path from s to j by first going to i and then augmenting that with a backward edge from i to j. Hence in both cases, we have an augmenting path from s to j, a contradiction to the fact that $j \in \bar{X}$.

Proof (con't).

Since (X, \bar{X}) is an s - t cut, we have by Lemma (1),

$$
\begin{aligned}
v(f) & =f(X, \bar{X})-f(\bar{X}, X)= \\
& =\sum_{i \in X, j \in \bar{X}} f(i, j)-\sum_{j \in \bar{X}, i \in X} f(j, i) \\
& =\sum_{i \in X, j \in \bar{X}} c(i, j)=C(X, \bar{X}),
\end{aligned}
$$

i.e. f is a maximal flow.

Theorem (2)

(The Max-flow Min-cut Theorem) For any network the maximal flow value from vertex s to vertex t is equal to the minimal cut capacity, i.e.

$$
\max _{f} v(f)=\min _{(X, \bar{X})} C(X, \bar{X}) .
$$

Proof.

A unique minimal cut with respect to the given maximal flow is constructed in the proof of the Theorem (1).

Example

System of Distinct Representative

Five Senators $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ are members of three committees a_{1}, a_{2} and a_{3}. The membership is as follows:

Maximal Flow Problem
Methods for Maximal-Flow Problems

Maximal Flow and
Minimal Cut
LP Interpretation of Max-flow Min-cut Problem

One member from each committee is to be represented in a super-committee. Is it possible to send one distinct representative from each of the committees?

LP Interpretation of Max-flow Min-cut Problem

- Prove the max-flow min-cut theorem again by using the duality theorems of LP problems.
- The LP for maximal flow problem can be stated as:

$$
\begin{align*}
\text { Max } & v=f(t, s) \\
(P) & \text { s.t. }
\end{align*} \begin{cases}f(i, V)-f(V, i)=0, & \forall i \in V, \tag{8}\\
0 \leq f(i, j) \leq c_{i j}, & \forall(i, j) \in E .\end{cases}
$$

Maximal Flow Problem

Notice that there are $|V|$'s conservation constraints and $|E|$'s capacity constraints.

Let us write the cost vector of the primal problem in (9) as $\mathbf{c}^{T}=(0, \ldots, 0,1)$, the right hand side vector as $\mathbf{b}^{T}=\left(0, \ldots, 0 \mid \ldots, c_{i j}, \ldots\right)$ and the solution vector as $\mathbf{x}^{T}=\left(\ldots, f_{i j}, \ldots, f_{t s}\right)$. Then we can write the coefficient matrix of the primal in the form:

Maximal Flow Problem

Lemma (3)

The coefficient matrix A of the maximal flow problem is unimodular.

Proof.

Partition $A=\left[\begin{array}{l}B \\ C\end{array}\right]$, where B corresponds to the vertex constraints and C corresponds to the edge constraints. Consider any k-by- k submatrices M_{k} of A. First we consider the case where M_{k} is a submatrix of B only. Then there are three cases: (i) all columns of M_{k} consist of two nonzero entries, (ii) there is a column of M_{k} consisting of all zero entries, and (iii) there is a column of M_{k} consisting of only one nonzero entries. In case (i), then the two nonzero entries must be 1 and -1 . Hence if we sum all the rows in M_{k}, we have a zero vector. Hence M_{k} is singular and therefore $\operatorname{det} M_{k}=0$. In case (ii), of course M_{k} is singular and therefore again $\operatorname{det} M_{k}=0$. In case (iii), then we can expand the determinant at the only nonzero entry in that column and get $\operatorname{det} M_{k}= \pm \operatorname{det} M_{k-1}$. By repeating the arguments, we see that the conclusion of the Lemma is valid.

Maximal Flow Problem

Proof. (con't).

Now suppose $M_{k}=\left[\begin{array}{l}B_{k} \\ C_{k}\end{array}\right]$, where B_{k} and C_{k} are submatrices of B and C respectively. If any one of the rows of C_{k} is zero, then $\operatorname{det}\left(M_{k}\right)=0$, and we are done. If one of the rows of C_{k} is nonzero, then because of the form of C (which is an identity matrix plus a zero column), the nonzero row must contain at most one nonzero entry and the nonzero entry must be 1. Expanding the determinant of M_{k} at that entry and we have $\operatorname{det}\left(M_{k}\right)=\operatorname{det}\left(M_{k-1}\right)$, where M_{k-1} is a square submatrix of M_{k}.

Maximal Flow Problem

Methods for

Maximal-Flow

Maximal Flow and
Minimal Cut
LP Interpretation of
Max-flow Min-cut
Problem

Prime and Dual Problem

Max $\quad v=f(t, s)$
(Prime) s.t. $\begin{cases}f(i, V)-f(V, i)=0, & \forall i \in V, \\ 0 \leq f(i, j) \leq c_{i j}, & \forall(i, j) \in E .\end{cases}$

Min

$$
\sum_{(i, j) \in E} c_{i j} w_{i j}
$$

(Dual) subject to $\begin{cases}u_{i}-u_{j}+w_{i j} \geq 0, & (i, j) \in E, \\ u_{t}-u_{s} \geq 1, & \\ u_{i} \text { unrestricted, }, & i \in V, \\ w_{i j} \geq 0, & (i, j) \in E .\end{cases}$

Lemma (4)

For every s-t cut (X, \bar{X}), there exists a feasible solution (\mathbf{u}, \mathbf{w}) to the dual with the objective function value being equal to $C(X, \bar{X})$.

Proof.

Set

$$
u_{i}=\left\{\begin{array}{ll}
0, & i \in X \\
1, & i \in \bar{X}
\end{array} \quad \text { and } \quad w_{i j}= \begin{cases}1, & (i, j) \in(X, \bar{X}) \\
0, & (i, j) \notin(X, \bar{X}) .\end{cases}\right.
$$

We claim that (\mathbf{u}, \mathbf{w}) is feasible, i.e. it satisfies (10). In fact, we can check all four possible cases where i and j are either in X or \bar{X}. For example, if $i \in X$ and $j \in \bar{X}$, then
$u_{i}-u_{j}+w_{i, j}=0-1+1=0$. Since $u_{t}-u_{s}=1-0=1$, the last constraint is also satisfied. Finally

$$
C(X, \bar{X})=\sum_{(i, j) \in(X, \bar{X})} c_{i j}=\sum_{(i, j) \in(X, \bar{X})} c_{i j} w_{i j}=\sum_{(i, j) \in E} c_{i j} w_{i j} .
$$

Corollary

Given any s-t flow f and any s-t cut (X, \bar{X}),

$$
v(f) \leq C(X, \bar{X})
$$

Proof.

If (X, \bar{X}) is an s - t cut, then there exists a feasible solution to the dual with the objective function value being equal to $C(X, \bar{X})$. By the weak duality of LP, we have

$$
C(X, \bar{X})=\sum_{(i, j) \in E} c_{i j} w_{i j} \geq f(t, s)=v(f)
$$

Lemma (5)

For every BFS (\mathbf{u}, \mathbf{w}) to the dual, there exists an s-t cut (X, \bar{X}) such that

$$
\begin{equation*}
C(X, \bar{X}) \leq \sum_{(i, j) \in E} c_{i j} w_{i j} \tag{11}
\end{equation*}
$$

Proof.

Since $\operatorname{det} M=\operatorname{det} M^{T}$ and the coefficient matrix A for the primal is totally unimodular, we see that the coefficient matrix A^{T} for the dual is also totally unimodular. Hence every BFS to the dual is integer-valued. In particular, if $w_{i j}>0$, then $w_{i j} \geq 1$. Given an s-t path, if we sum over the dual constraints over the path, we get

$$
\left(u_{s}-u_{t}\right)+\sum_{(i, j) \in s-t} w_{i j} \geq 0 .
$$

Since $u_{t}-u_{s} \geq 1$, we have $\sum_{(i, j) \in s-t \text { path }} w_{i j} \geq 1$. By the integral and non-negativity properties of \mathbf{w}, there exists at least one edge (k, ℓ) in the path such that $w_{k \ell} \geq 1$.

Proof. (con't).

Let
$X \equiv\{s\} \cup\left\{k \mid\right.$ there exists a path from s to k along edges with $w_{i j}$
Let $\bar{X} \equiv V \backslash X$. Since there is some $w_{k \ell} \geq 1$ on every s- t path, $t \in \bar{X}$. Hence (X, \bar{X}) is an s - t cut and $w_{i j} \geq 1$ if $(i, j) \in(X, \bar{X})$. Thus

$$
\sum_{(i, j) \in E} c_{i j} w_{i j} \geq \sum_{(i, j) \in(X, \bar{X})} c_{i j} w_{i j} \geq \sum_{(i, j) \in(X, \bar{X})} c_{i j}=C(X, \bar{X})
$$

Maximal Flow Problem

Maximal Flow and
Minimal Cut
LP Interpretation of Max-flow Min-cut Problem

Corollary

For an optimal solution $\left(\mathbf{u}^{*}, \mathbf{w}^{*}\right)$, there exists an s-t cut that satisfies

$$
\begin{equation*}
C(X, \bar{X})=\sum_{(i, j) \in E} c_{i j} w_{i j}^{*} . \tag{12}
\end{equation*}
$$

Proof.

Assume that ($\mathbf{u}^{*}, \mathbf{w}^{*}$) is an optimal basic feasible solution. Let (X^{*}, \bar{X}^{*}) be the s - t cut corresponding to ($\mathbf{u}^{*}, \mathbf{w}^{*}$), i.e. $C\left(X^{*}, \bar{X}^{*}\right) \leq \sum_{(i, j) \in E} c_{i j} w_{i j}^{*}$ by (11). By Lemma 10, given this s - t cut, there exists a feasible solution ($\hat{\mathbf{u}}, \hat{\mathbf{w}}$) to the dual such that

$$
C\left(X^{*}, \bar{X}^{*}\right)=\sum_{(i, j) \in E} c_{i j} \hat{W}_{i j} .
$$

Since $\left(\mathbf{u}^{*}, \mathbf{w}^{*}\right)$ is optimal, we then have

$$
\sum_{(i, j) \in E} c_{i j} w_{i j}^{*} \leq \sum_{(i, j) \in E} c_{i j} \hat{w}_{i j}=C\left(X^{*}, \bar{X}^{*}\right) \leq \sum_{(i, j) \in E} c_{i j} w_{i j}^{*}
$$

where the last inequality follows from (11). Thus (12) holds. \square

Theorem (3)

(Max-flow Min-cut via LP duality)

$$
\max _{f} v(f)=\min _{(X, \bar{X})} C(X, \bar{X})
$$

Proof.

We have by the strong duality theorem,

$$
v^{*}(f)=f^{*}(t, s)=\sum_{(i, j) \in E} c_{i j} w_{i j}^{*}=C^{*}(X, \bar{X}) .
$$

Note that the cut (X, \bar{X}) has to be minimum. In fact, if there exists another cut (Y, \bar{Y}) such that $C(Y, \bar{Y})<C(X, \bar{X})$, then by Lemma 10, there exists a feasible solution ($\mathbf{u}, \tilde{\mathbf{w}}$) with $\sum_{(i, j) \in E} c_{i j} \tilde{W}_{i j}=C(Y, \bar{Y})<C(X, \bar{X})=\sum_{(i, j) \in E} c_{i j} w_{i j}^{*}, \mathrm{a}$ contradiction to the optimality of ($\left.\mathbf{u}^{*}, \mathbf{w}^{*}\right)$.

