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Basic Terms on Graph and Network

Graph

G = (N,E)

N = set of nodes (or vertices), E ⊆ N × N = set of edges.

Notations: N = {xi}; N = {i}.

E ⊆ {(xi , xj)|xi ∈ N, xj ∈ N}; E ⊆ {(i , j)|i ∈ N, j ∈ N}.

Elementary chain: sequence of distinct nodes
x1, x2, . . . , xk such that (x1, x2), (x2, x3), . . . , (xk−1, xk ) ∈ E .

Elementary cycle: elementary chain when x1 = xk .
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Directed Graph (or Digraph)

G = (N,A)

N = set of nodes (or vertices), A ⊆ N × N = set of arcs .

Directed edge: referred to as arc

(xi , xj) or (i , j) then becomes an ordered pair.

Simple path: sequence of distinct nodes x1, x2, . . . , xk such
that (x1, x2), (x2, x3), . . . , (xk−1, xk ) ∈ A.

Simple cycle (or circuit): simple path when x1 = xk .
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Connectedness: every pair of distinct nodes is joined by (or
reachable via) an elementary chain (or simple path).

A connected (sub)graph with no cycles is called a tree.

Network

G = (N,A) directed graph with additional information (or
attribution) on nodes and/or arcs.

For example, cij = capacity or distance of arc (i , j), aij = cost of
arc (i , j); ui or vi = node label (e.g. weight or potential) on node
i .
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Trees

Let G = (N,E) be a simple graph with n nodes. The following
statements are equivalent.

1 G is a tree (connected and acyclic).
2 There is a unique path between each pair of nodes in G.
3 G contains n − 1 edges and is connected.
4 G contains n − 1 edges and is acyclic.
5 G is acyclic and if any two nonadjacent nodes are joined

by an edge, the resulting graph has exactly one cycle.

These equivalent definitions lead directly to the following useful
properties of a tree.

If G = (N,E) is a tree and f /∈ E , then G′ = (N,E ∪ {f})
contains exactly one cycle.
If C is the edge set of the cycle of G′ and e ∈ C \ {f},
H = (N,E ∪ f \ {e}) also a tree.
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Spanning Trees

A spanning tree H = (N,F ) of a connected graph
G = (N,E) is a tree whose set of nodes is N and whose
set of edges F is a subset of E .

Any connected graph indeed has a spanning tree as its
subgraph.

Algorithm for building a spanning tree:
Step 1. Any edge ordering e1, e2, . . . , em; F 0 = φ, i = 1.

Step 2. If H = (N,F i−1 ∪ {ei}) is acyclic, then F i = F i−1 ∪ {ei}.
Otherwise, F i = F i−1.

Step 3. If F i = n − 1, stop; and (N,F i) is a spanning tree.
Otherwise, i = i + 1, and return to Step 2.
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Minimum Spanning Tree (MST)

A spanning tree will correspond to a communication
network in which each pair of nodes is connected by
exactly one path.

A minimum spanning tree (MST) is then a communication
network of the least possible total distance (or weight) as a
whole.

Algorithms for building a MST:
1 Kruskal’s Algorithm:

(Initially T is empty.)
Repeat until set T has n − 1 edges:

Add to T the shortest edge that does not form
a cycle with edges already in T .

2 Prim’s Algorithm:
(Initially T contains of any one edge of shortest length.)

Repeat until tree T has n − 1 edges:
Add to T the shortest edges between a node in T
and a node not in T .
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Example

Table below shows the distances among the 10 cities that are
nicely modelled by a complete (undirected) graph of 10 nodes
and 45 edges.
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Example-con’t

Both Kruskal’s algorithm and Prim’s algorithm give the same
MST solution. The list of edges chosen is given by

{(1,8), (2,6), (3,10), (4,7), (4,9), (4,10), (5,7), (6,10), (8,9)}

for a total weight of 221.

However, the orders of the individual edges chosen are
different.
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Theorem

Kruskal’s algorithm yields an MST.

Proof.

Suppose the algorithm produces the tree T = (N,F ) and T is
not optimal.

Let T ∗ = (N,F ∗) be an optimal tree with the property that
|F ∗ \ F | is minimum over all optimal trees. Note that F ∗ \ F 6= φ
and F \ F ∗ 6= φ. Let f be a smallest-weight edge in F \ F ∗.

Consider the set of edges F ∗ ∪ {f}, which by the property of a
tree, contains a unique cycle. Let C be the edge set of the
cycle. Again, since T ∗ is a tree, there is an edge f ∗ ∈ C \ F
such that the graph (N,F ∗ ∪ {f} \ {f ∗}) is a tree, sat T̂ .
Moreover, T̂ is also an optimal tree, since w(f ) ≤ w(f ∗), where
the inequality holds because the algorithm selected f .

Finally, |F̂ \ F | = |F ∗ \ F | − 1, which contradicts the choice of
T ∗. So, T is optimal.
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Theorem

Prim’s algorithm yields an MST.

Proof.

Denote by Ti the tree constructed after i iterations of the
algorithm, i = 1,2, . . . ,n − 1.
Hence the algorithm produces a spanning tree T = Tn−1 and
suppose T is not optimal. Let T ∗ = (N,F ∗) be an optimal tree
that has as many edges in common with T as possible.
As T 6= T ∗, let f = (a,b) be the first edge chosen by the
algorithm (say in its k th iteration, k ≤ n − 1) that is not in T ∗.
(Thus f ∈ Tk \ T ∗.) Let P be the path in T ∗ from a to b; and f ∗

be an edge of P between a node in Tk−1 and a node not in
Tk−1 (Thus f ∗ ∈ T ∗ \ Tk .) Note that edge f also has one end in
Tk−1 and one end not in Tk−1 (but in Tk ). We thus have
w(f ) ≤ w(f ∗) because the algorithm has chosen f over f ∗.
Now T̂ ≡ (N,F ∗ ∪ {f} \ {f ∗}) obtained from T ∗ by replacing f ∗

with f is then an optimal tree and |F̂ \ F | = |F ∗ \ F | − 1, which
contradicts the choice of T ∗. So, T is optimal.
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