Lecture 11
 Network Models in OR

MATH3220 Operations Research and Logistics
Mar. 17, 2015

Basic Terms on Graph and Network

Trees, Spanning Trees and MST

Agenda

(1) Basic Terms on Graph and Network

2 Trees, Spanning Trees and MST

Basic Terms on Graph and Network

Graph

$G=(N, E)$
$N=$ set of nodes (or vertices), $E \subseteq N \times N=$ set of edges.
Notations: $N=\left\{x_{i}\right\} ; N=\{i\}$.
$E \subseteq\left\{\left(x_{i}, x_{j}\right) \mid x_{i} \in N, x_{j} \in N\right\} ; E \subseteq\{(i, j) \mid i \in N, j \in N\}$.

- Elementary chain: sequence of distinct nodes $x_{1}, x_{2}, \ldots, x_{k}$ such that $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{k-1}, x_{k}\right) \in E$.
- Elementary cycle: elementary chain when $x_{1}=x_{k}$.

Directed Graph (or Digraph)

$G=(N, A)$
$N=$ set of nodes (or vertices), $A \subseteq N \times N=$ set of arcs .
Directed edge: referred to as arc
$\left(x_{i}, x_{j}\right)$ or (i, j) then becomes an ordered pair.

Basic Terms on Graph and Network

Trees, Spanning Trees and MST

- Simple path: sequence of distinct nodes $x_{1}, x_{2}, \ldots, x_{k}$ such that $\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{k-1}, x_{k}\right) \in A$.
- Simple cycle (or circuit): simple path when $x_{1}=x_{k}$.

Connectedness: every pair of distinct nodes is joined by (or reachable via) an elementary chain (or simple path).

A connected (sub)graph with no cycles is called a tree.

Network

$G=(N, A) \quad$ directed graph with additional information (or attribution) on nodes and/or arcs.

For example, $c_{i j}=$ capacity or distance of arc (i, j), $a_{i j}=$ cost of $\operatorname{arc}(i, j) ; u_{i}$ or $v_{i}=$ node label (e.g. weight or potential) on node i.

Basic Terms on Graph and Network

Trees, Spanning Trees and MST

Trees

Let $G=(N, E)$ be a simple graph with n nodes. The following statements are equivalent.
(1) G is a tree (connected and acyclic).
(2) There is a unique path between each pair of nodes in G.
(3) G contains $n-1$ edges and is connected.
(9) G contains $n-1$ edges and is acyclic.
(5) G is acyclic and if any two nonadjacent nodes are joined by an edge, the resulting graph has exactly one cycle.

These equivalent definitions lead directly to the following useful properties of a tree.

- If $G=(N, E)$ is a tree and $f \notin E$, then $G^{\prime}=(N, E \cup\{f\})$ contains exactly one cycle.
- If C is the edge set of the cycle of G^{\prime} and $e \in C \backslash\{f\}$, $H=(N, E \cup f \backslash\{e\})$ also a tree.

Spanning Trees

- A spanning tree $H=(N, F)$ of a connected graph $G=(N, E)$ is a tree whose set of nodes is N and whose set of edges F is a subset of E.
- Any connected graph indeed has a spanning tree as its subgraph.
- Algorithm for building a spanning tree:

Step 1. Any edge ordering $e_{1}, e_{2}, \ldots, e_{m} ; F^{0}=\phi, i=1$.
Step 2. If $H=\left(N, F^{i-1} \cup\left\{e_{i}\right\}\right)$ is acyclic, then $F^{i}=F^{i-1} \cup\left\{e_{i}\right\}$. Otherwise, $F^{i}=F^{i-1}$.
Step 3. If $F^{i}=n-1$, stop; and $\left(N, F^{i}\right)$ is a spanning tree. Otherwise, $i=i+1$, and return to Step 2.

Minimum Spanning Tree (MST)

- A spanning tree will correspond to a communication network in which each pair of nodes is connected by exactly one path.
- A minimum spanning tree (MST) is then a communication network of the least possible total distance (or weight) as a

Basic Terms on Graph and Network whole.

- Algorithms for building a MST:
(1) Kruskal's Algorithm:
(Initially T is empty.)
Repeat until set T has $n-1$ edges:
Add to T the shortest edge that does not form a cycle with edges already in T.
(2) Prim's Algorithm:
(Initially T contains of any one edge of shortest length.)
Repeat until tree T has $n-1$ edges:
Add to T the shortest edges between a node in T and a node not in T.

Example

Table below shows the distances among the 10 cities that are nicely modelled by a complete (undirected) graph of 10 nodes and 45 edges.

node	2	3	4	5	6	7	8	9	10
1	96	105	50	41	86	46	29	56	70
2		78	49	94	21	64	63	41	37
3			60	84	61	54	86	76	51
4				45	35	20	26	17	18
5					80	36	55	59	64
6						46	50	28	8
7							45	37	30
8								21	45
9									25

Example-con't

node	2	3	4	5	6	7	8	9	10
1	96	105	50	41	86	46	29	56	70
2		78	49	94	21	64	63	41	37
3			60	84	61	54	86	76	51
4				45	35	20	26	17	18
5					80	36	55	59	64
6						46	50	28	8
7							45	37	30
8									21
9									45

Both Kruskal's algorithm and Prim's algorithm give the same MST solution. The list of edges chosen is given by

$$
\{(1,8),(2,6),(3,10),(4,7),(4,9),(4,10),(5,7),(6,10),(8,9)\}
$$

for a total weight of 221.
However, the orders of the individual edges chosen are different.

Theorem

Kruskal's algorithm yields an MST.

Proof.

Suppose the algorithm produces the tree $T=(N, F)$ and T is not optimal.

Let $T^{*}=\left(N, F^{*}\right)$ be an optimal tree with the property that
$\left|F^{*} \backslash F\right|$ is minimum over all optimal trees. Note that $F^{*} \backslash F \neq \phi$ and $F \backslash F^{*} \neq \phi$. Let f be a smallest-weight edge in $F \backslash F^{*}$.
Consider the set of edges $F^{*} \cup\{f\}$, which by the property of a tree, contains a unique cycle. Let C be the edge set of the cycle. Again, since T^{*} is a tree, there is an edge $f^{*} \in C \backslash F$ such that the graph $\left(N, F^{*} \cup\{f\} \backslash\left\{f^{*}\right\}\right)$ is a tree, sat \hat{T}. Moreover, \hat{T} is also an optimal tree, since $w(f) \leq w\left(f^{*}\right)$, where the inequality holds because the algorithm selected f.
Finally, $|\hat{F} \backslash F|=\left|F^{*} \backslash F\right|-1$, which contradicts the choice of T^{*}. So, T is optimal.

Theorem

Prim's algorithm yields an MST.

Proof.

Denote by T_{i} the tree constructed after i iterations of the algorithm, $i=1,2, \ldots, n-1$.
Hence the algorithm produces a spanning tree $T=T_{n-1}$ and suppose T is not optimal. Let $T^{*}=\left(N, F^{*}\right)$ be an optimal tree that has as many edges in common with T as possible. As $T \neq T^{*}$, let $f=(a, b)$ be the first edge chosen by the algorithm (say in its k th iteration, $k \leq n-1$) that is not in T^{*}. (Thus $f \in T_{k} \backslash T^{*}$.) Let P be the path in T^{*} from a to b; and f^{*} be an edge of P between a node in T_{k-1} and a node not in T_{k-1} (Thus $f^{*} \in T^{*} \backslash T_{k}$.) Note that edge f also has one end in T_{k-1} and one end not in T_{k-1} (but in T_{k}). We thus have $w(f) \leq w\left(f^{*}\right)$ because the algorithm has chosen f over f^{*}. Now $\hat{T} \equiv\left(N, F^{*} \cup\{f\} \backslash\left\{f^{*}\right\}\right)$ obtained from T^{*} by replacing f^{*} with f is then an optimal tree and $|\hat{F} \backslash F|=\left|F^{*} \backslash F\right|-1$, which contradicts the choice of T^{*}. So, T is optimal.

