Lecture 10 Stochastic DP Problems

MATH3220 Operations Research and Logistics

Mar. 10, 2015

A simple problem
Problems with
Time-Lag or Delay
Stochastic Equipment Replacement Problem

Agenda

(1) A simple problem
2) Problems with Time-Lag or Delay
(3) Stochastic Equipment Replacement Problem

A Simple Problem

- Imagine that we have been hired as consultant to a forgetful traveler who wishes to get from A to line B at minimum cost.
- Our problem is compounded by the fact that if we instruct the traveler to go diagonally up (or down) he remembers our advice and does so with probability $3 / 4$; with probability $1 / 4$ he forgets and does the opposite, taking the diagonally downward arc.
- The objective: minimize the expected cost of the trip.

What Constitutes A Solution?

- Deterministic DP: use DP to determine first the optimal policy function giving a decision for every vertex, and then deduced from it the actual optimal sequence of decisions for initial vertex.
- Stochastic DP: a policy and a sequence are quite different matters.
- In conformity with control engineering terminology, we shall call the solution specified by a sequence of decisions open-loop control and the solution specified by a policy feedback control.

Numerical Solutions of Our Example

The best open-loop control sequence:

Consider all eight possible sequences of three decisions each, and choose the one with minimum expected cost.

$$
E_{D U D}=\frac{27}{64} \cdot 0+\frac{9}{64}(10+12+1200)+\frac{3}{64}(12+10+10)+\frac{1}{64} \cdot 1210=192 \frac{1}{4}
$$

It turns out that the decision sequence $U-U-D$ has the minimum expected cost, $120 \frac{3}{16}$.

Numerical Solutions of Our Example

The Optimal feedback control:

Dynamic programming yields the optimal feedback control, as we shall see below.
the optimal expected value function:

$$
\begin{aligned}
S(x, y)= & \text { the expected cost of the remaining process } \\
& \text { if we start at vertex }(x, y) \text { and use an } \\
& \text { optimal feedback control policy. }
\end{aligned}
$$

By the stochastic version of the principle of optimality, we have $S(x, y)$
$=\min \left[\begin{array}{l}U: \frac{3}{4}\left\{a_{u}(x, y)+S(x+1, y+1)\right\}+\frac{1}{4}\left\{a_{d}(x, y)+S(x+1, y-1)\right\} \\ D: \frac{1}{4}\left\{a_{u}(x, y)+S(x+1, y+1)\right\}+\frac{3}{4}\left\{a_{d}(x, y)+S(x+1, y-1)\right\}\end{array}\right]$.
The boundary condition is

$$
S(3,3)=0, S(3,1)=0, S(3,-1)=0, S(3,-3)=0 .
$$

Numerical Solutions of Our Example

The Optimal feedback control:

The expected cost using the optimal feedback control policy is $84 \frac{1}{4}$.

Problems with Time-Lag or Delay

Consider the minimum cost stochastic path problem shown in figure, where our decision at stage k is implemented at stage $k+2$, no matter what the state at stage $k+2$.

Decision U results in a diagonally upward move when it is implemented two stages later with probability $\frac{3}{4}$ and it results in a downward move two stages later with probability $\frac{1}{4}$. Decision D is like the U decision except the probability $\frac{3}{4}$ and $\frac{1}{4}$ are interchanged.
We assume that at $(0,0),(1,1)$, and $(1,-1)$ the probability of moving diagonally upward and the probability of moving diagonally downward each
 equal $\frac{1}{2}$.

Stochastic Time-Lag Model

The optimal expected value function:
$S\left(i, j, d_{1}, d_{2}\right)=\quad$ the minimum expected cost of the remaining process given that we start at $(i, j), d_{1}$ was the decision made at stage $i-1$, and d_{2} was the decision made at stage $i-2$.

Stochastic Time-Lag Model

By the principle of optimality, writing each of the four possible sets of previous two decisions separately, we have

$$
\begin{aligned}
S(i, j, U, U)= & \frac{3}{4} a_{U}(i, j)+\frac{1}{4} a_{d}(i, j) \\
& +\min \left[\begin{array}{l}
\frac{3}{4} S(i+1, j+1, U, U)+\frac{1}{4} S(i+1, j-1,1, \\
\frac{3}{4} S(i+1, j+1, D, U)+\frac{1}{4} S(i+1, j-1,
\end{array}\right. \\
S(i, j, U, D)= & \frac{1}{4} a_{u}(i, j)+\frac{3}{4} a_{d}(i, j) \\
& +\min \left[\begin{array}{l}
\frac{1}{4} S(i+1, j+1, U, U)+\frac{3}{4} S(i+1, j-1, U, U) \\
\frac{1}{4} S(i+1, j+1, D, U)+\frac{3}{4} S(i+1, j-1, D, U)
\end{array}\right] \\
S(i, j, D, U)=\quad & \frac{3}{4} a_{U}(i, j)+\frac{1}{4} a_{d}(i, j) \\
& +\min \left[\begin{array}{l}
\frac{3}{4} S(i+1, j+1, U, D)+\frac{1}{4} S(i+1, j-1, U, D) \\
\frac{3}{4} S(i+1, j+1, D, D)+\frac{1}{4} S(i+1, j-1, D, D)
\end{array}\right] \\
S(i, j, D, D)=\quad & \frac{1}{4} a_{u}(i, j)+\frac{3}{4} a_{d}(i, j) \\
& +\min \left[\begin{array}{l}
\frac{1}{4} S(i+1, j+1, U, D)+\frac{3}{4} S(i+1, j-1, U, D) \\
\frac{1}{4} S(i+1, j+1, D, D)+\frac{3}{4} S(i+1, j-1, D, D)
\end{array}\right]
\end{aligned}
$$

Stochastic Time-Lag Model

For processes starting at stage 0 or 1, upward and downward transitions each occur with probability $\frac{1}{2}$, so

$$
\begin{aligned}
S\left(1, j, U,,_{-}\right)= & \frac{1}{2} a_{U}(1, j)+\frac{1}{2} a_{d}(1, j) \\
& +\min \left[\begin{array}{l}
\frac{1}{2} S(2, j+1, U, U)+\frac{1}{2} S(2, j-1, U, U) \\
\frac{1}{2} S(2, j+1, D, U)+\frac{1}{2} S(2, j-1, D, U)
\end{array}\right] \\
S\left(1, j, D,,_{-}\right)=\quad & \frac{1}{2} a_{U}(1, j)+\frac{1}{2} a_{d}(1, j) \\
& +\min \left[\begin{array}{l}
\frac{1}{2} S(2, j+1, U, D)+\frac{1}{2} S(2, j-1, U, D) \\
\frac{1}{2} S(2, j+1, D, D)+\frac{1}{2} S(2, j-1, D, D)
\end{array}\right] \\
S\left(0,0,,_{-}\right)=\quad & \frac{1}{2} a_{U}(0,0)+\frac{1}{2} a_{d}(0,0) \\
& +\min \left[\begin{array}{l}
\frac{1}{2} S\left(1,1, U,{ }_{2}\right)+\frac{1}{2} S\left(1,-1, U,,_{-}\right) \\
\frac{1}{2} S\left(1,1, D, _\right)+\frac{1}{2} S\left(1,-1, D,,_{-}\right)
\end{array}\right]
\end{aligned}
$$

The boundary condition, assuming the process ends when $i=4$, is most easily written as

$$
S\left(4, j, d_{1}, d_{2}\right)=0 \quad \text { for all } j, d_{1} \text { and } d_{2} .
$$

Stochastic Time-Lag Model

In this case, the value of S will be computed at stage 3 for various decisions at stage 2 where these decisions are irrelevant and not really made, but the answer will be correct. More complicated to write, but easier to use for hand computation, are formulas for S at stage 2 of the form

$$
\begin{aligned}
S(2, j, U, U)= & \frac{9}{16}\left[a_{u}(2, j)+a_{u}(3, j+1)\right]+\frac{3}{16}\left[a_{u}(2, j)+a_{d}(3, j+1)\right] \\
& +\frac{3}{16}\left[a_{d}(2, j)+a_{u}(3, j-1)\right]+\frac{1}{16}\left[a_{d}(2, j)+a_{d}(3, j-1)\right]
\end{aligned}
$$

Exercise

Determine the feedback policy that minimizes the expected cost of going from A to line B in the network in the figure where the cost of a path is the sum of its arc numbers plus 1 for each change in direction, and where at each vertex there are two admissible decisions. Decision U diagonally up with probability $\frac{2}{3}$ and down with probability $\frac{1}{3}$ and decision D goes up with probability $\frac{1}{3}$ and down with probability $\frac{2}{3}$.

A simple problem
Problems with Time-Lag or Delay

Stochastic Equipment Replacement Problem

Stochastic Equipment Replacement Problem

- Consider a stochastic version of the equipment replacement problem, where we either keep or replace our current machine at the start of each year $i, i=1,2, \cdots, N$.
- We assume that the operating cost is a random variable, dependent upon the age of the machine.
- We further assume that our machine may suffer a catastrophic failure at the end of any year, and then it must be replaced by a new machine.

The data defining our problem are
$N=$ the duration of the process,
$y=$ the age of the machine with which we start year 1,
$n(i, j)=$ the probability that the net operating cost during the year is $j, j=0,1, \cdots, J$, given that the machine is of age i at the start of the year,
$p=$ the purchase price of new machine,
$t(i)=$ the trade-in value of a machine, in working order, just turned age i,
$u(i)=$ the trade-in value of a machine, in failed condition, just turned age i,
$q(i)=$ the probability that a machine, in working order, of age i at the start of a year fails at the end of the year,
$s(i)=$ the salvage value at the start of year $N+1$ of a working machine just turned age i,
$v(i)=$ the salvage value at the start of year $N+1$ of a failed machine just turned age i.

Stochastic Equipment Replacement Model

To formulate the problem of minimizing the expected cost for the above situation, we define
$S(i, k)=$ the minimum expected cost of the remaining process if we start year k with a machine, in working order of age i.

Then for $k=1, \cdots, N-1 ; i=1, \cdots, k-1$ and $i=y+k-1$:

$$
\left.\begin{array}{rl}
B: & p-t(i)+\sum_{j=0}^{J} j n(0, j)+q(0)\{p-u(1)+S(0, k+1)\} \\
& +\{1-q(0)\} S(1, k+1) \\
K: & \sum_{j=0}^{J} j n(i, j)+q(i)\{p-u(i+1)+S(0, k+1)\} \\
& +\{1-q(i)\} S(i+1, k+1)
\end{array}\right]
$$

and

$$
P(i, k)= \begin{cases}B & \text { if } B \leq K, \\ K & \text { if } B>K .\end{cases}
$$

Stochastic Equipment Replacement Model

For $i=0$,
$S(0, k)=\sum_{j=0}^{J} j n(0, j)+q(0)\{p-u(1)+S(0, k+1)\}+\{1-q(0)\} S\left(1, k+A_{s}\right)$ jiple problem
and the boundary condition is

$$
S(i, N)=\operatorname{Min}\left[\begin{array}{l}
B: p-t(i)+\sum_{j=0}^{J} j n(0, j)-q(0) v(1)-\{1-q(0)\} s(1) \\
K: \sum_{j=0}^{J} j n(i, j)-q(i) v(i+1)-\{1-q(i)\} s(i+1)
\end{array}\right]
$$

