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1.3

Linear Programming

max (or min) z = c1x1 + c2x2 + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤b1

a21x1 + a22x2 + · · ·+ a2nxn ≤b2

...
...

am1x1 + am2x2 + · · ·+ amnxn ≤bm

xj ≥ 0 for each j = 1, . . . ,n

In general,

max (or min) z = cx
s.t. Ax ≤ b

x ≥ 0
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1.4

A 2-variable integer programming

maximize 3x + 4y
subject to 5x + 8y ≤ 24

x , y ≥ 0 and integers

Q: What is the optimal solution?
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1.5

Feasible Region

Question 1: What is the optimal integer solution?
Question 2: What is the optimal linear solution?
Question 3: Can we use linear programming to solve this
integer programming?

maximize 3x + 4y
subject to 5x + 8y ≤ 24

x , y ≥ 0 and integers
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1.6

A rounding technique that sometimes is useful, and
sometimes not.

Solve LP (ignore integrality), get
x∗ = 24

5 , y∗ = 0 and z∗ = 14 2
5 .

Round, get x = 5, y = 0,
infeasible!
Truncate, get x = 4, y = 0,
and z = 12.
Same solution value at
x = 0, y = 3.
However, the optimal is
x = 1, y = 1 and z = 13.
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Linear vs. integer programming
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Linear vs. integer programming
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1.9

Linear vs. integer programming

linear programming

max c1x1 + c2x2 + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤b1

a21x1 + a22x2 + · · ·+ a2nxn ≤b2

...
...

am1x1 + am2x2 + · · ·+ amnxn ≤bm

xj ≥ 0 for each j = 1, . . . ,n
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1.10

Linear vs. integer programming

integer programming (IP)

max c1x1 + c2x2 + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤b1

a21x1 + a22x2 + · · ·+ a2nxn ≤b2

...
...

am1x1 + am2x2 + · · ·+ amnxn ≤bm

xj ≥ 0 and integer
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1.11

Linear vs. integer programming

integer programming(binary variable)

max c1x1 + c2x2 + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤b1

a21x1 + a22x2 + · · ·+ a2nxn ≤b2

...
...

am1x1 + am2x2 + · · ·+ amnxn ≤bm

xj = 0 or 1
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1.12

Linear vs. integer programming

integer programming (binary variable)

max c1x1 + c2x2 + · · ·+ cnxn

s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤b1

a21x1 + a22x2 + · · ·+ a2nxn ≤b2

...
...

am1x1 + am2x2 + · · ·+ amnxn ≤bm

xj = 0 or 1⇔ 0 ≤ xj ≤ 1, xj integer
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1.13

Types of integer programming

Integer programming problems usually involve optimization of a
linear objective function to linear constraints, nonnegativity
conditions and some or all of the variables are required to be
integer.

A pure integer program: All variables are required to be
integral.

max 3x1 + 4x2 + 5x3 + 6x4

s.t. 2x1 + 3x2 − 4x3 + 2x4 ≤ 34
x1 + x2 + x3 + x4 ≤ 9
xj ≥ 0 and integer for each j = 1 to 4

In general,

max (or min) z = cx
s.t. Ax = b, x ≥ 0 integer
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1.14

Types of integer programming

Binary (or 0-1) integer program: All variables are required
to be 0 or 1.

max 3x1 + 4x2 + 5x3 + 6x4

s.t. 2x1 + 3x2 − 4x3 + 2x4 ≤ 34
x1 + x2 + x3 + x4 ≤ 9
xj ∈ {0,1} for each j = 1 to 4

Recall: the constraint

xj ∈ {0,1}

is equivalent to

0 ≤ xj ≤ 1 and xj is integer
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1.15

Types of integer programming

Mixed integer program(MILP)

Some but not necessarily all variables are required to be
integer. Other variables are permitted to be fractional.

max 3x1 + 4x2 + 5x3 + 6x4

s.t. 2x1 + 3x2 − 4x3 + 2x4 ≤ 34
x1 + x2 + x3 + x4 ≤ 9
xj ∈ {0,1} for each j = 1,2
x3, x4 ≥ 0

In general,

max (or min) z = c1x + c2v
s.t. A1x + A2v = b

x ≥ 0 integer
v ≥ 0.
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1.16

Some IP Models

Capital budgeting problem

investment budget = $14,000

Investment 1 2 3 4 5
Cash Required $5,000 $4,000 $7,000 $3,000 $6,000
Present Value $12,000 $11,000 $13,000 $8,000 $15,000

An investment can be selected or not. One cannot select a
fraction of an investment.

Question: How to place the money so as to maximize the total
present value?
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1.17

Capital budgeting problem - con’t

investment budget = $14,000

Investment 1 2 3 4 5
Cash Required $5,000 $4,000 $7,000 $3,000 $6,000
Present Value $12,000 $11,000 $13,000 $8,000 $15,000

Decision variables

xj =

{
1, if we invest in j = 1, . . . ,5
0, otherwise

Objective and constraints

max 12x1 + 11x2 + 13x3 + 8x4 + 15x5
s.t. 5x1 + 4x2 + 7x3 + 3x4 + 6x5 ≤ 14

xj ∈ {0,1} for each j = 1 to 5
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1.18

Capital budgeting problem - con’t

How to model "logical" constraints

Only one of the previous 4 investments can be accept.

We can only make two investments.

If investment 1 is made, investment 2 must also be made.

If investment 1 is made, investment 3 cannot be made.

Either investment 2 is made or investment 3 is made, but
not both.
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1.19

Formulating Constraints

Only one of the previous 4 investments can be accept.

x1 + x2 + x3 + x4 ≤ 1
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1.20

Formulating Constraints

Only one of the previous 4 investments can be accept.

x1 + x2 + x3 + x4 ≤ 1

We can only make two investments.

x1 + x2 + x3 + x4 + x5 ≤ 2
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1.21

Formulating Constraints

Only one of the previous 4 investments can be accept.

x1 + x2 + x3 + x4 ≤ 1

We can only make two investments.

x1 + x2 + x3 + x4 + x5 ≤ 2

If investment 1 is made, investment 2 must also be made.

x2 ≥ x1
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1.22

Formulating Constraints

If investment 1 is made, investment 3 cannot be made.

x1 + x3 ≤ 1
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1.23

Formulating Constraints

If investment 1 is made, investment 3 cannot be made.

x1 + x3 ≤ 1

Either investment 2 is made or investment 3 is made, but
not both.

x2 + x3 = 1
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1.24

Capital budgeting problem - con’t

In general, assume that there are n potential investments. In
particular, investment j has a present value cj , and requires an
investment of aij amount of resource i , such as cash or
manpower, used on the j th investment, we can state the
problem formally as:

Maximize
∑n

j=1 cjxj ,

subject to
∑n

j=1 aijxj ≤ bi (i = 1,2, . . . ,m),

xj ∈ {0,1} (j = 1,2, . . . ,n)
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0-1 Knapsack problem

Knapsack problem is the simplest capital budgeting
problem with only one resource.
You have n items to choose from to put into your knapsack.
Item j has weight aj , and it has value cj .
The maximum weight your knapsack can hold is b.

Formulate the knapsack problem:

Maximize
∑n

j=1 cjxj ,

subject to
∑n

j=1 ajxj ≤ b,
xj ∈ {0,1} (j = 1,2, . . . ,n).
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Warehouse Location

A manager must decide which of n warehouses to use for
meeting the demand of m customers for a good. The decisions
to be made are which warehouses to operate and how much to
ship from any warehouse to any customer. Let

yi =

{
1 if warehouse i is opened,
0 if warehouse i is not opened;

xij = Amount to be sent from warehouse i to customer j .

The relevant costs are:

fi = Fixed operating cost for warehouse i , if opened
cij = Per-unit operating cost at warehouse i plus

the transportation cost for shipping from warehouse i
to customer j .

There are two types of constraints for the model:
1 the demand dj of each customer must be filled from the

warehouse; and
2 goods can be shipped from a warehouse only if it is

opened.
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1.27

Suppose you knew which warehouses were open.

Let S = set of open warehouses.

xij = demand satisfied for
customer j at warehouse i
yi = 1 for i in S.
yi = 0 for i not in S.

Min
∑
i,j

cijxij +
∑
i∈S

fi

Subject to:

customers get their
demand satisfied

no shipments are made
from an empty warehouse

∑
i

xij = dj

xij ≤ dj if yi = 1
xij = 0 if yi = 0

and x ≥ 0
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1.28

More on warehouse location

xij = demand satisfied for
customer j at warehouse i
yi = 1 for warehousei is
opened.
yi = 0 otherwise.

Min
∑
i,j

cijxij +
∑

i

fiyi

Subject to:

customers get their
demand satisfied

each warehouse is either
opened or it is not (no
partial openings)
no shipments are made
from an empty warehouse

∑
i

xij = dj

0 ≤ yi ≤ 1
yi integral for all i

xij ≤ djyi for all i , j

and x ≥ 0



Introduction to
Integer Programming

Intro to IP

Some IP Models

1.29

The above is a core subproblem in supply chain management,
and it can be enriched

more complex distribution system

capacity constraints

non-linear transportation costs

delivery time restriction

multiple products

business rules

and more
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1.30

Fire Station Problem

Locate the fire stations so that each district has a fire
station in it, or next to it.
Minimize the number of fire stations needed

Here is one feasible solution with five fire stations.
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1.31

Representation as Set Covering Problem

Set no. Set
1 {1,2,4,5}
2 {1,2,3,5,6}
3 {2,3,6,7}
...

...
16 {13, 15, 16}



Introduction to
Integer Programming

Intro to IP

Some IP Models

1.32

Representation as an IP

Decision variables:

which district to choose
which sets to choose

Constraints:
each district has a fire
station or is next to one
each element gets covered

Set no. Set
1 {1,2,4,5}
2 {1,2,3,5,6}
3 {2,3,6,7}
...

...
16 {13, 15, 16}
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1.33

Representation as an IP

xj = 1 if set j is selected
xj = 0 otherwise

Min x1 + x2 + . . .+ x16
s.t. x1 + x2 + x4 + x5 ≥ 1

x1 + x2 + x3 + x5 + x6 ≥ 1
...

...
x13 + x15 + x16 ≥ 1
xj ∈ {0,1} for each j .

Set no. Set
1 {1,2,4,5}
2 {1,2,3,5,6}
3 {2,3,6,7}
...

...
16 {13, 15, 16}
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1.34

On Covering Problem

"Covering problems" model a number of applied situations.

Assigning pilots and stewards to planes
Assigning police cars, ambulances, and other city
personnel
package delivery, oil delivery, etc.
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Summary on Integer Programming

Dramatically improves the modelling capability
Integral quantities

Logical constriants

Modeling fixed charges

Classical problems in capital budgeting and location

Not as easy to model

Not as easy to solve
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