Lecture 1 Introduction to Integer Programming

MATH3220 Operations Research and Logistics Jan. 6, 2015

Pan Li The Chinese University of Hong Kong

Introduction to Integer Programming

Intro to IP Some IP Models

Agenda

Introduction to Integer Programming

Intro to IP

Linear Programming

Introduction to Integer Programming

Intro to IP Some IP Models

$$\begin{array}{ll} \max \mbox{ (or min)} & z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ {\rm s.t.} & a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n & \leq b_1 \\ & a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n & \leq b_2 \\ & \vdots & & \vdots \\ & a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n & \leq b_m \\ & & x_j \geq 0 \mbox{ for each } j = 1, \dots, n \end{array}$$

In general,

$$\begin{array}{ll} \max \mbox{ (or min)} & z = cx \\ \mbox{ s.t. } & Ax \leq b \\ & x \geq 0 \end{array}$$

1.3

A 2-variable integer programming

 $\begin{array}{ll} \mbox{maximize} & 3x+4y\\ \mbox{subject to} & 5x+8y \leq 24\\ & x,y \geq 0 \mbox{ and integers} \end{array}$

Q: What is the optimal solution?

Intro to IF

Feasible Region

Question 1: What is the optimal integer solution? Question 2: What is the optimal linear solution? Question 3: Can we use linear programming to solve this integer programming?

maximize3x + 4ysubject to $5x + 8y \le 24$ $x, y \ge 0$ and integers

A rounding technique that sometimes is useful, and sometimes not.

- Solve LP (ignore integrality), get $x^* = \frac{24}{5}, y^* = 0$ and $z^* = 14\frac{2}{5}$ produces
- Round, get x = 5, y = 0, infeasible!
- Truncate, get x = 4, y = 0, and z = 12.
- Same solution value at x = 0, y = 3.
- However, the optimal is x = 1, y = 1 and z = 13.

Introduction to Integer Programming

Introduction to Integer Programming

Intro to IP

 b_1

 b_m

Introduction to Integer Programming

Intro to IP

Introduction to Integer Programming

linear programming

Intro to IP Some IP Models

Introduction to

Integer Programming

Some IP Models

integer programming (IP)

r

$$\begin{array}{rll} \max & c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n} \\ \text{s.t.} & a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} & \leq b_{1} \\ & a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} & \leq b_{2} \\ & \vdots & & \vdots \\ & a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} & \leq b_{m} \\ & & x_{j} \geq 0 & \text{and integer} \end{array}$$

Introduction to Integer Programming

integer programming(binary variable)

Introduction to Integer Programming

Some IP Models

integer programming (binary variable)

Types of integer programming

Integer programming problems usually involve optimization of a linear objective function to linear constraints, nonnegativity conditions and some or all of the variables are required to be integer.

A pure integer program: All variables are required to be integral.

$$\begin{array}{ll} \max & 3x_1 + 4x_2 + 5x_3 + 6x_4 \\ \text{s.t.} & 2x_1 + 3x_2 - 4x_3 + 2x_4 \leq 34 \\ & x_1 + x_2 + x_3 + x_4 \leq 9 \\ & x_j \geq 0 \text{ and integer for each } j = 1 \text{ to } 4 \end{array}$$

In general,

 $\begin{array}{ll} \max \mbox{ (or min)} & z = cx \\ \mbox{ s.t. } & Ax = b, x \geq 0 \mbox{ integer} \end{array}$

Introduction to Integer Programming

Intro to IP

Types of integer programming

Binary (or 0-1) integer program: All variables are required to be 0 or 1.

$$\begin{array}{ll} \max & 3x_1 + 4x_2 + 5x_3 + 6x_4 \\ \text{s.t.} & 2x_1 + 3x_2 - 4x_3 + 2x_4 \leq 34 \\ & x_1 + x_2 + x_3 + x_4 \leq 9 \\ & x_j \in \{0,1\} \text{ for each } j = 1 \text{ to } 4 \end{array}$$

Intro to IF

Some IP Models

Recall: the constraint

$$\textit{x}_{j} \in \{0,1\}$$

is equivalent to

 $0 \le x_j \le 1$ and x_j is integer

Types of integer programming

Mixed integer program(MILP)

n

Some but not necessarily all variables are required to be integer. Other variables are permitted to be fractional.

$$\begin{array}{ll} \max & 3x_1+4x_2+5x_3+6x_4\\ {\rm s.t.} & 2x_1+3x_2-4x_3+2x_4\leq 34\\ & x_1+x_2+x_3+x_4\leq 9\\ & x_j\in\{0,1\} \text{ for each } j=1,2\\ & x_3,x_4\geq 0 \end{array}$$

Introduction to Integer Programming

Intro to IF

Some IP Models

In general,

 $\begin{array}{ll} \max \mbox{ (or min)} & z = c_1 x + c_2 v \\ \mbox{ s.t. } & A_1 x + A_2 v = b \\ & x \geq 0 \mbox{ integer} \\ & v \geq 0. \end{array}$

Some IP Models

Introduction to Integer Programming

Intro to IP Some IP Models

Capital budgeting problem

investment budget = \$14,000							
Investment	1	2	3	4	5		
Cash Required	\$5,000	\$4,000	\$7,000	\$3,000	\$6,000		
Present Value	\$12,000	\$11,000	\$13,000	\$8,000	\$15,000		

An investment can be selected or not. One cannot select a fraction of an investment.

Question: How to place the money so as to maximize the total present value?

Capital budgeting problem - con't

Decision variables

$$x_j = \begin{cases} 1, & \text{if we invest in } j = 1, \dots, 5 \\ 0, & \text{otherwise} \end{cases}$$

Objective and constraints

 $\begin{array}{ll} \max & 12x_1 + 11x_2 + 13x_3 + 8x_4 + 15x_5 \\ {\rm s.t.} & 5x_1 + 4x_2 + 7x_3 + 3x_4 + 6x_5 \leq 14 \\ & x_j \in \{0,1\} \text{ for each } j = 1 \text{ to } 5 \end{array}$

Capital budgeting problem - con't

How to model "logical" constraints

- Only one of the previous 4 investments can be accept.
- We can only make two investments.
- If investment 1 is made, investment 2 must also be made.
- If investment 1 is made, investment 3 cannot be made.
- Either investment 2 is made or investment 3 is made, but not both.

Intro to IP

• Only one of the previous 4 investments can be accept.

 $x_1 + x_2 + x_3 + x_4 \leq 1$

Introduction to Integer Programming

Intro to IP

• Only one of the previous 4 investments can be accept.

$$x_1 + x_2 + x_3 + x_4 \le 1$$

• We can only make two investments.

$$x_1 + x_2 + x_3 + x_4 + x_5 \le 2$$

Intro to IP

• Only one of the previous 4 investments can be accept.

$$x_1 + x_2 + x_3 + x_4 \le 1$$

• We can only make two investments.

$$x_1 + x_2 + x_3 + x_4 + x_5 \le 2$$

• If investment 1 is made, investment 2 must also be made.

$$x_2 \ge x_1$$

Intro to IP

• If investment 1 is made, investment 3 cannot be made.

$$x_1 + x_3 \leq 1$$

Intro to IP

• If investment 1 is made, investment 3 cannot be made.

$$x_1 + x_3 \le 1$$

• Either investment 2 is made or investment 3 is made, but not both.

$$x_2 + x_3 = 1$$

Intro to IP

Capital budgeting problem - con't

In general, assume that there are *n* potential investments. In particular, investment *j* has a present value c_j , and requires an investment of a_{ij} amount of resource *i*, such as cash or manpower, used on the *j*th investment, we can state the problem formally as:

Introduction to Integer Programming

Intro to IP

Some IP Models

Maximize subject to

$$\sum_{j=1}^{n} c_j x_j, \ \sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i = 1, 2, \dots, m), \ x_j \in \{0, 1\} \quad (j = 1, 2, \dots, n)$$

0-1 Knapsack problem

- Knapsack problem is the simplest capital budgeting problem with only one resource.
- You have *n* items to choose from to put into your knapsack.
- Item *j* has weight a_j , and it has value c_j .
- The maximum weight your knapsack can hold is b.

Formulate the knapsack problem:

Maximize subject to

$$\sum_{j=1}^{n} c_j x_j, \ \sum_{j=1}^{n} a_j x_j \leq b, \ x_j \in \{0, 1\}$$
 $(j = 1, 2, ..., n).$

Intro to IP

Warehouse Location

A manager must decide which of n warehouses to use for meeting the demand of m customers for a good. The decisions to be made are which warehouses to operate and how much to ship from any warehouse to any customer. Let

$$y_i = \begin{cases} 1 & \text{if warehouse } i \text{ is opened,} \\ 0 & \text{if warehouse } i \text{ is not opened.} \end{cases}$$

 x_{ij} = Amount to be sent from warehouse *i* to customer *j*.

The relevant costs are:

 $f_i =$ Fixed operating cost for warehouse *i*, if opened $c_{ij} =$ Per-unit operating cost at warehouse *i* plus the transportation cost for shipping from warehouse *i* to customer *j*.

There are two types of constraints for the model:

- the demand d_j of each customer must be filled from the warehouse; and
- goods can be shipped from a warehouse only if it is opened.

Introduction to Integer Programming

Intro to IP

Suppose you knew which warehouses were open.

Let S = set of open warehouses.

- x_{ij} = demand satisfied for customer j at warehouse i
- *y_i* = 1 for *i* in *S*.
 y_i = 0 for *i* not in *S*.

Subject to:

- customers get their demand satisfied
- no shipments are made from an empty warehouse

$$\begin{array}{ll} x_{ij} \leq d_j & \quad \text{if } y_i = 1 \\ x_{ij} = 0 & \quad \text{if } y_i = 0 \end{array}$$

and $x \ge 0$

Introduction to Integer Programming

Intro to IP

Some IP Models

$$\mathbf{u}_j = \mathbf{u}_j$$

 $\sum_{i,j} c_{ij} x_{ij} + \sum_{i \in \mathfrak{S}} f_i$

$$\sum_{i} x_{ij} = d_j$$

Min

More on warehouse location

- *x_{ij}* = demand satisfied for customer *j* at warehouse *i*
- $y_i = 1$ for warehouse *i* is opened.

 $y_i = 0$ otherwise.

Subject to:

- customers get their demand satisfied
- each warehouse is either opened or it is not (no partial openings)
- no shipments are made from an empty warehouse

$$\sum_{i,j} c_{ij} x_{ij} + \sum_i f_i y_i$$

$$\sum_{i} x_{ij} = d_j$$

Min

 $0 \le y_i \le 1$ y_i integral for all i

 $x_{ij} \leq d_j y_i$ for all i, j

and $x \ge 0$

Intro to IP Some IP Model

Introduction to Integer Programming

Intro to IP

Some IP Models

The above is a core subproblem in supply chain management, and it can be enriched

- more complex distribution system
- capacity constraints
- non-linear transportation costs
- delivery time restriction
- multiple products
- business rules
- and more

Fire Station Problem

- Locate the fire stations so that each district has a fire station in it, or next to it.
- Minimize the number of fire stations needed

Here is one feasible solution with five fire stations.

Introduction to Integer Programming

Intro to IP

Representation as Set Covering Problem

Introduction to Integer Programming

Set no.	Set		
1	{1,2,4,5}		
2	{1,2,3,5,6}		
3	{2,3,6,7}		
:			
16	{13, 15, 16}		

Representation as an IP

Introduction to Integer Programming

Intro to IP

Some IP Models

Decision variables:

- which district to choose
- which sets to choose

Constraints:

- each district has a fire station or is next to one
- each element gets covered

Set no.	Set		
1	{1,2,4,5}		
2	{1,2,3,5,6}		
3	{2,3,6,7}		
:	:		
16	{13, 15, 16}		

Representation as an IP

Introduction to Integer Programming

<i>x_j</i> = 1	if set <i>j</i> is selected		
$x_j = 0$	otherwise	Set no.	Set
Min	$X_1 + X_2 + \ldots + X_{16}$	1	{1,2,4,5}
s.t.	$x_1 + x_2 + x_4 + x_5 > 1$	2	{1,2,3,5,6}
	$x_1 + x_2 + x_3 + x_5 + x_6 > 1$	3	{2,3,6,7}
	: :	:	:
	$x_{13} + x_{15} + x_{16} \ge 1$	16	{13, 15, 16}
	$x_j \in \{0, 1\}$ for each j .		

On Covering Problem

"Covering problems" model a number of applied situations.

- Assigning pilots and stewards to planes
- Assigning police cars, ambulances, and other city personnel
- package delivery, oil delivery, etc.

Introduction to Integer Programming

Intro to IP

Summary on Integer Programming

- Dramatically improves the modelling capability
 - Integral quantities
 - Logical constriants
 - Modeling fixed charges
 - Classical problems in capital budgeting and location
- Not as easy to model
- Not as easy to solve

Intro to IP