Lecture 1 Introduction to Integer Programming

MATH3220 Operations Research and Logistics Jan. 6, 2015

Pan Li
The Chinese University of Hong Kong

Intro to IP
Some IP Models

2 Some IP Models

Linear Programming

max (or min)
s.t.
$z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$

$$
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}
$$

$$
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}
$$

:

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \quad \leq b_{m}
$$

$$
x_{j} \geq 0 \text { for each } j=1, \ldots, n
$$

In general,

$$
\begin{aligned}
\max (\text { or } \min) & z=c x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

A 2-variable integer programming

maximize	$3 x+4 y$
subject to	$5 x+8 y \leq 24$
	$x, y \geq 0$ and integers

Intro to IP
Some IP Models

Q: What is the optimal solution?

Feasible Region

Question 1: What is the optimal integer solution?
Question 2: What is the optimal linear solution?
Question 3: Can we use linear programming to solve this integer programming?

maximize	$3 x+4 y$
subject to	$5 x+8 y \leq 24$
	$x, y \geq 0$ and integers

A rounding technique that sometimes is useful, and sometimes not.

- Solve LP (ignore integrality) get $x^{*}=\frac{24}{5}, y^{*}=0$ and $z^{*}=14 \frac{2}{5}$
- Round, get $x=5, y=0$, infeasible!
- Truncate, get $x=4, y=0$, and $z=12$.
- Same solution value at $x=0, y=3$.
- However, the optimal is $x=1, y=1$ and $z=13$.

Linear vs. integer programming

Linear vs. integer programming

Introduction to Integer Programming

Intro to IP
Some IP Models

Linear vs. integer programming

linear programming

max

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

s.t. $\quad a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}$
$\leq b_{1}$
$\leq b_{2}$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \quad \leq b_{m}$
$x_{j} \geq 0$ for each $j=1, \ldots, n$

Linear vs. integer programming

integer programming (IP)

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

$$
\text { s.t. } \quad a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}
$$

$$
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}
$$

$$
\begin{aligned}
& \leq b_{1} \\
& \leq b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \quad \leq b_{m}
$$

$$
x_{j} \geq 0 \quad \text { and integer }
$$

Linear vs. integer programming

integer programming(binary variable)
$\max \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}$
s.t. $\quad a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \quad \leq b_{m}$
$x_{j}=0$ or 1

Linear vs. integer programming

integer programming (binary variable)

$$
\begin{array}{rlc}
\max & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} & \\
\text { s.t. } & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & \leq b_{2} \\
& \vdots & \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & \leq b_{m} \\
& x_{j}=0 \text { or } 1 \Leftrightarrow 0 \leq x_{j} \leq 1, x_{j} \text { integer } &
\end{array}
$$

Types of integer programming

Integer programming problems usually involve optimization of a linear objective function to linear constraints, nonnegativity conditions and some or all of the variables are required to be integer.

A pure integer program: All variables are required to be integral.

$$
\begin{array}{cl}
\text { max } & 3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4} \\
\text { s.t. } & 2 x_{1}+3 x_{2}-4 x_{3}+2 x_{4} \leq 34 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 9 \\
& x_{j} \geq 0 \text { and integer for each } j=1 \text { to } 4
\end{array}
$$

In general,
\max (or min) $\quad z=c x$
s.t. $\quad A x=b, x \geq 0$ integer

Types of integer programming

Binary (or 0-1) integer program: All variables are required to be 0 or 1 .

$$
\begin{aligned}
\max & 3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4} \\
\text { s.t. } & 2 x_{1}+3 x_{2}-4 x_{3}+2 x_{4} \leq 34 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 9 \\
& x_{j} \in\{0,1\} \text { for each } j=1 \text { to } 4
\end{aligned}
$$

Recall: the constraint

$$
x_{j} \in\{0,1\}
$$

is equivalent to

$$
0 \leq x_{j} \leq 1 \text { and } x_{j} \text { is integer }
$$

Types of integer programming

Mixed integer program(MILP)

Some but not necessarily all variables are required to be integer. Other variables are permitted to be fractional.

$$
\begin{aligned}
\max & 3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4} \\
\text { s.t. } & 2 x_{1}+3 x_{2}-4 x_{3}+2 x_{4} \leq 34 \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 9 \\
& x_{j} \in\{0,1\} \text { for each } j=1,2 \\
& x_{3}, x_{4} \geq 0
\end{aligned}
$$

In general,

$$
\begin{aligned}
\max (\text { or } \min) & z=c_{1} x+c_{2} v \\
\text { s.t. } & A_{1} x+A_{2} v=b \\
& x \geq 0 \text { integer } \\
& v \geq 0
\end{aligned}
$$

Some IP Models

Capital budgeting problem

investment budget = \$14,000

Investment	1	2	3	4	5
Cash Required	$\$ 5,000$	$\$ 4,000$	$\$ 7,000$	$\$ 3,000$	$\$ 6,000$
Present Value	$\$ 12,000$	$\$ 11,000$	$\$ 13,000$	$\$ 8,000$	$\$ 15,000$

An investment can be selected or not. One cannot select a fraction of an investment.

Question: How to place the money so as to maximize the total present value?

Capital budgeting problem - con't

investment budget = \$14,000

Investment	1	2	3	4	$5_{\text {lntro to IP }}$
Cash Required	$\$ 5,000$	$\$ 4,000$	$\$ 7,000$	$\$ 3,000$	$\$ 6,000$ \|P Models
Present Value	$\$ 12,000$	$\$ 11,000$	$\$ 13,000$	$\$ 8,000$	$\$ 15,000$

- Decision variables

$$
x_{j}= \begin{cases}1, & \text { if we invest in } j=1, \ldots, 5 \\ 0, & \text { otherwise }\end{cases}
$$

- Objective and constraints

$$
\begin{array}{ll}
\max & 12 x_{1}+11 x_{2}+13 x_{3}+8 x_{4}+15 x_{5} \\
\text { s.t. } & 5 x_{1}+4 x_{2}+7 x_{3}+3 x_{4}+6 x_{5} \leq 14 \\
& x_{j} \in\{0,1\} \text { for each } j=1 \text { to } 5
\end{array}
$$

Capital budgeting problem - con't

How to model "logical" constraints

- Only one of the previous 4 investments can be accept.
- We can only make two investments.
- If investment 1 is made, investment 2 must also be made.
- If investment 1 is made, investment 3 cannot be made.
- Either investment 2 is made or investment 3 is made, but not both.

Formulating Constraints

- Only one of the previous 4 investments can be accept.

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 1
$$

Formulating Constraints

- Only one of the previous 4 investments can be accept.

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 1
$$

- We can only make two investments.

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 2
$$

Formulating Constraints

- Only one of the previous 4 investments can be accept.

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 1
$$

- We can only make two investments.

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 2
$$

- If investment 1 is made, investment 2 must also be made.

$$
x_{2} \geq x_{1}
$$

Formulating Constraints

- If investment 1 is made, investment 3 cannot be made.

$$
x_{1}+x_{3} \leq 1
$$

Introduction to Integer Programming

Intro to IP
Some IP Models

Formulating Constraints

- If investment 1 is made, investment 3 cannot be made.

$$
x_{1}+x_{3} \leq 1
$$

- Either investment 2 is made or investment 3 is made, but not both.

$$
x_{2}+x_{3}=1
$$

Capital budgeting problem - con't

In general, assume that there are n potential investments. In particular, investment j has a present value c_{j}, and requires an investment of $a_{i j}$ amount of resource i, such as cash or manpower, used on the j th investment, we can state the problem formally as:

$$
\begin{array}{ll}
\text { Maximize } & \sum_{j=1}^{n} c_{j} x_{j}, \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad(i=1,2, \ldots, m), \\
& x_{j} \in\{0,1\} \quad(j=1,2, \ldots, n)
\end{array}
$$

0-1 Knapsack problem

- Knapsack problem is the simplest capital budgeting problem with only one resource.
- You have n items to choose from to put into your knapsack.
- Item j has weight a_{j}, and it has value c_{j}.
- The maximum weight your knapsack can hold is b.

Formulate the knapsack problem:

Maximize	$\sum_{j=1}^{n} c_{j} x_{j}$,
subject to	$\sum_{j=1}^{n} a_{j} x_{j} \leq b$,
	$x_{j} \in\{0,1\} \quad(j=1,2, \ldots, n)$.

Warehouse Location

A manager must decide which of n warehouses to use for meeting the demand of m customers for a good. The decisions to be made are which warehouses to operate and how much to ship from any warehouse to any customer. Let

$x_{i j}=$ Amount to be sent from warehouse i to customer j.
The relevant costs are:
$f_{i}=\quad$ Fixed operating cost for warehouse i, if opened
$c_{i j}=$ Per-unit operating cost at warehouse i plus the transportation cost for shipping from warehouse i to customer j.

There are two types of constraints for the model:
(1) the demand d_{j} of each customer must be filled from the warehouse; and
(2) goods can be shipped from a warehouse only if it is opened.

Suppose you knew which warehouses were open.

Let $S=$ set of open warehouses.

- $x_{i j}=$ demand satisfied for customer j at warehouse i
- $y_{i}=1$ for i in S. $y_{i}=0$ for i not in S.

Min

Subject to:

- customers get their demand satisfied
- no shipments are made from an empty warehouse

$$
\begin{gathered}
x_{i j} \leq d_{j} \quad \text { if } y_{i}=1 \\
x_{i j}=0 \quad \text { if } y_{i}=0 \\
\quad \text { and } x \geq 0
\end{gathered}
$$

More on warehouse location

- $x_{i j}=$ demand satisfied for customer j at warehouse i
- $y_{i}=1$ for warehouse i is

Min opened.
$y_{i}=0$ otherwise.
Subject to:

- customers get their demand satisfied
- each warehouse is either opened or it is not (no partial openings)
- no shipments are made from an empty warehouse

$$
\begin{gathered}
\sum_{i} x_{i j}=d_{j} \\
0 \leq y_{i} \leq 1 \\
y_{i} \text { integral for all } i \\
x_{i j} \leq d_{j} y_{i} \text { for all } i, j \\
\text { and } x \geq 0
\end{gathered}
$$

The above is a core subproblem in supply chain management, and it can be enriched

- more complex distribution system
- capacity constraints
- non-linear transportation costs
- delivery time restriction
- multiple products
- business rules
- and more

Fire Station Problem

- Locate the fire stations so that each district has a fire station in it, or next to it.
- Minimize the number of fire stations needed

Here is one feasible solution with five fire stations.

Intro to IP

Representation as Set Covering Problem

Introduction to Integer Programming

Intro to IP

Representation as an IP

Decision variables:

- which district to choose
- which sets to choose

Constraints:

- each district has a fire station or is next to one

Set no.	Set
1	$\{1,2,4,5\}$
2	$\{1,2,3,5,6\}$
3	$\{2,3,6,7\}$
\vdots	\vdots
16	$\{13,15,16\}$

- each element gets covered

Representation as an IP

$x_{j}=1 \quad$ if set j is selected
$x_{j}=0 \quad$ otherwise
Min

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{16} \\
& x_{1}+x_{2}+x_{4}+x_{5} \geq 1 \\
& x_{1}+x_{2}+x_{3}+x_{5}+x_{6} \geq \\
& \quad \vdots \\
& \quad \vdots \\
& x_{13}+x_{15}+x_{16} \geq 1 \\
& x_{j} \in\{0,1\} \text { for each } j .
\end{aligned}
$$

Set no.	Set
1	$\{1,2,4,5\}$
2	$\{1,2,3,5,6\}$
3	$\{2,3,6,7\}$
\vdots	\vdots
16	$\{13,15,16\}$

On Covering Problem

"Covering problems" model a number of applied situations.

- Assigning pilots and stewards to planes
- Assigning police cars, ambulances, and other city personnel
- package delivery, oil delivery, etc.

Summary on Integer Programming

- Dramatically improves the modelling capability
- Integral quantities
- Logical constriants
- Modeling fixed charges
- Classical problems in capital budgeting and location
- Not as easy to model
- Not as easy to solve

