Tutorial 11 (Nov 17)

- 1. Show that if a function $f \in C(\mathbb{R})$ can be uniformly approximated on \mathbb{R} by polynomials, then f is itself a polynomial.
- 2. Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that

$$\int_0^1 f(x)e^{nx} dx = 0 \quad \text{for all } n = 0, 1, 2, \dots$$

Show that $f \equiv 0$.

3. Notice: I am sorry that I made a mistake in the definition of a Baire space in the tutorial. The following is the correct definition.

Definition: A Baire space is a topological space X that satisfies any one of the following equivalent properties:

(a) Every countable union of nonwhere dense closed subsets of X is nowhere dense in X.

Every countable union of closed subsets of X with empty interior has empty interior.

(b) Every countable union of dense open subsets of X is dense in X.

The Baire Category Theorem can be reformulated as follow:

Theorem (Baire Category Theorem). Every complete metric space is a Baire space.

- 4. (a) Show that \mathbb{R} and $\mathbb{R} \setminus \mathbb{Q}$ are Baire spaces.
 - (b) Show that \mathbb{Q} is not a Baire space.
- 5. (a) Show that any open subset of a Baire space is a Baire space.
 - (b) Give an example to show that a closed subset of a Baire space may not be a Baire space. (You may consider the sets $\mathbb{R}^2 \setminus ((\mathbb{R} \setminus \mathbb{Q}) \times \{0\})$ and $\mathbb{Q} \times \{0\}$.)
- 6. Let $f : X \to \mathbb{R}$ be the pointwise limit of a sequence of continuous functions $f_n : X \to \mathbb{R}$. Show that the set of point of continuity of f is dense in X.