THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH 2055 Tutorial 1 (Sep 16)
 Ng Wing Kit

1. Prove that $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$

Suggested Solution:

$\forall \epsilon>0$ (which reads "given any $\epsilon>0$ "),
let N be the first natural number which is larger than the real number ϵ^{2}. Then $\forall n>N$ (which reads "for every n bigger than N "),
we have $n>\epsilon^{2}$,
implying $\frac{1}{\sqrt{n}}<\epsilon$.
Hence we have the following inequalities, which completes the $\epsilon-N$ proof required.

$$
\begin{aligned}
|\sqrt{n+1}-\sqrt{n}-0| & =(\sqrt{n+1}-\sqrt{n})\left(\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right) \\
& =\frac{1}{\sqrt{n+1}+\sqrt{n}} \\
& <\frac{1}{\sqrt{n}} \\
& <\epsilon
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$
(Idea behind the choice of N): ${ }^{1}$
Actually we work 'backwards', starting from the inequality

$$
\begin{equation*}
|\sqrt{n+1}-\sqrt{n}-0|<\epsilon \tag{1}
\end{equation*}
$$

and try to find a suitable N. (see line 2 in the 'suggested sollution'!)
One difficulty is the fact that the inequality (1) contains too many ' n 's (i.e. there is the term $\sqrt{n+1}$ as well the term \sqrt{n}) so that we don't know how to use them to find a suitable N.
The trick is to multiply the expression

$$
\sqrt{n+1}-\sqrt{n}-0
$$

by

$$
\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}
$$

[^0]so that the expression
$|\sqrt{n+1}-\sqrt{n}-0|$ becomes $\frac{1}{\sqrt{n+1}+\sqrt{n}}$. After doing this, we 'throw away' one term in the denominator to arrive at the inequality $\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}}$ which motivates us how to find N.
2. Prove that $\lim _{n \rightarrow \infty}(\sqrt{n+\sqrt{n}}-\sqrt{n})=\frac{1}{2}$.

Suggested Solution:

$\forall \epsilon>0$,
Let N be the first natural number which is larger than the real number

$$
\frac{1}{\left[(2 \epsilon+1)^{2}-1\right]^{2}}
$$

Then $\forall n>N, \quad$ we have $n>\frac{1}{\left[(2 \epsilon+1)^{2}-1\right]^{2}}$ hence it follows that

$$
\frac{1}{2}\left(\sqrt{1+\frac{1}{\sqrt{n}}}-1\right)<\epsilon
$$

which implies the following inequalities:

$$
\left|\sqrt{n+\sqrt{n}}-\sqrt{n}-\frac{1}{2}\right|=\left|(\sqrt{n+\sqrt{n}}-\sqrt{n})\left(\frac{\sqrt{n+\sqrt{n}}+\sqrt{n}}{\sqrt{n+\sqrt{n}}+\sqrt{n}}\right)-\frac{1}{2}\right|
$$

(the left-hand side of the above equality contains too many " n " terms, so we try to clean up the terms until it contains only one n term. To do this, we multiply by $\frac{\sqrt{n+\sqrt{n}}+\sqrt{n}}{\sqrt{n+\sqrt{n}}+\sqrt{n}}$.)

$$
=\left|\frac{1}{\sqrt{1+\frac{1}{\sqrt{n}}}+1}-\frac{1}{2}\right|
$$

Now we combine these two fractions to become one fraction, viz.

$$
\begin{aligned}
& =\left|\frac{1-\sqrt{1+\frac{1}{\sqrt{n}}}}{2 \sqrt{1+\frac{1}{\sqrt{n}}}+2}\right| \\
& <\frac{1}{2}\left(\sqrt{1+\frac{1}{\sqrt{n}}}-1\right)
\end{aligned}
$$

Now the above expression contains only one " n ". Note that it is a positive number!
$\therefore \lim _{n \rightarrow \infty}(\sqrt{n+\sqrt{n}}-\sqrt{n})=\frac{1}{2}$
3. Let $b \in \mathbb{R}$ such that $0<b<1$. Prove that $\lim _{n \rightarrow \infty}\left(n b^{n}\right)=0$.

Suggested Solution:

$\forall \epsilon>0$,
as $0<b<1$, we can write b in the form $b=\frac{1}{1+d}$, where $d>0$ is a positive real number.

Doing this, and requiring that n satisfies the inequality

$$
\forall n>\max \left\{\frac{2}{\epsilon d^{2}+1}, 3\right\}
$$

we arrive at the following chain of inequalities

$$
\begin{aligned}
\left|n b^{n}-0\right| & =\frac{n}{(1+d)^{n}} \\
& \text { (next, we expand this by using the Binomial Theorem.) } \\
& =\frac{n}{1+n d+\frac{n(n-1) d^{2}}{2!}+\sum_{i=3}^{n} C_{i}^{n} d^{i}} \\
& \text { (next, we throw away all terms containing } d^{3} \text { and higher } \\
& \text { powers of } d . \text {) } \\
& <\frac{2 n}{n(n-1) d^{2}} \\
& =\frac{2}{d^{2}(n-1)} \\
& <\epsilon
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty}\left(n b^{n}\right)=0$

[^0]: ${ }^{1}$ I only write the 'idea' for this question. For questions 2 and 3 , the idea is basically the same, i.e. one works backwards and try to 'clean up' the terms to make the expression contain ultimately one single n or d term.

