MATH 2055 Suggested Solution to homework 3

Q2 I denotes the n-th term of each sequences by a_n

- (a) bounded above by $\sup_{n \in \mathbb{N}} a_n = 3$, bounded below by $\inf_{n \in \mathbb{N}} a_n = -2$, monotone increasing, $\lim_{n \to \infty} a_n = 3$
- (b) bounded above by $\sup_{n \in \mathbb{N}} a_n = 2$, bounded below by $\inf_{n \in \mathbb{N}} a_n = 1$, monotone decreasing, $\lim_{n \to \infty} a_n = 1$
- (c) $a_n = \frac{n}{1 \frac{1}{n+1}} = n+1$ no upper bound, bounded below by $\inf_{n \in \mathbb{N}} a_n = 2$, monotone increasing, divergent
- (d) bounded above by $\sup_{n \in \mathbb{N}} a_n = 1$, bounded below by $\inf_{n \in \mathbb{N}} a_n = -1$, $\lim_{n \to \infty} a_n = 0$
- (e) bounded above by $\sup_{n \in \mathbb{N}} a_n = 2$, bounded below by $\inf_{n \in \mathbb{N}} a_n = 0$, $\lim_{n \to \infty} a_n = 0$
- Q3 (a) by definition, for all $\epsilon > 0$, there exists m, such that $\sup_{n \in \mathbb{N}} a_n b_n \epsilon < a_m b_m$

also, $0 \le a_m \le \sup_{n \in \mathbb{N}} a_n$ and $0 \le b_m \le \sup_{n \in \mathbb{N}} b_n$ as ϵ is arbitrary positive number, we have $\sup_{n \in \mathbb{N}} a_n b_n \le (\sup_{n \in \mathbb{N}} a_n)(\sup_{n \in \mathbb{N}} b_n)$

the equality may not hold.

for example, we can pick

- $a_1 = 1000, a_n = 1$ for all n > 1
- $b_1 = 1, b_n = 2$ for all n > 1
- then $\sup_{n \in \mathbb{N}} a_n b_n = 1000$ while $(\sup_{n \in \mathbb{N}} a_n)(\sup_{n \in \mathbb{N}} b_n) = (1000)(2) = 2000$
- (b) by definition, for all $\epsilon > 0$, there exists m, such that $\sup_{n \in \mathbb{N}} |a_n + b_n| \epsilon < |a_m + b_m|$ by triangle inequality, $|a_m + b_m| \le |a_m| + |b_m|$ also, $|a_m| \le \sup_{n \in \mathbb{N}} |a_n|$ and $|b_m| \le \sup_{n \in \mathbb{N}} |b_n|$ as ϵ is arbitrary positive number, we have $\sup_{n \in \mathbb{N}} |a_n + b_n| \le \sup_{n \in \mathbb{N}} |a_n| + \sup_{n \in \mathbb{N}} |b_n|$
- (c) by definition, for all $\epsilon > 0$, there exists m, such that $\sup_{n \in \mathbb{N}} a_n \epsilon < a_m \leq \sup_{n \in \mathbb{N}} a_n$

which imply
$$a_m \leq \sup_{n \in \mathbb{N}} a_n < a_m + \epsilon$$

as $|a_m| \leq \sup_{n \in \mathbb{N}} |a_n|$ and
 $|a_m + \epsilon| \leq |a_m| + \epsilon$
we have $|\sup_{n \in \mathbb{N}} a_n| \leq max\{|a_m|, |a_m + \epsilon|\} \leq |a_m| + \epsilon \leq \sup_{n \in \mathbb{N}} |a_n| + \epsilon$
so $|\sup_{n \in \mathbb{N}} a_n| \leq \sup_{n \in \mathbb{N}} |a_n|$

Q6 (a) prove it by MI.

when $n = 1, 2 \le x_1 = 2.5 \le 3$

assume $2 \leq x_k \leq 3$ for some natural number **k**

then $4 \le x_k^2 \le 9$

and hence $2 \le a_{k+1} = \frac{1}{5}(x_k^2 + 6) \le 3$

(b)
$$\frac{1}{5}(x_n-2)(x_n-3) = (\frac{1}{5})(x_n^2-5x_n+6) = x_{n+1}-x_n$$

(c) as $2 \le x_n \le 3$

 $x_n - 2 \ge 0$ and $x_n - 3 \le 0$

imply $x_{n+1} - x_n \le 0$

so $\{x_n\}$ is monotone decreasing. As it is bounded below, it is convergent.

let $x = \lim_{n \to \infty} x_n$ then $\lim_{n \to \infty} (x_{n+1} - x_n) = \lim_{n \to \infty} \frac{1}{5} (x_n - 2)(x_n - 3)$ which imply x = 2 or x = 3

but x_n is decreasing and $x_1 = 2.5$, hence x = 2

Q8 there exists N such that for all n > N, $a_n < l + 1$

take $M = max\{a_1, a_2, \cdots, a_N, l+1\}$

then $a_n \leq M$ for all n and hence $\{a_n\}$ is bounded above.

for all $\epsilon > 0$, there exist N such that $a_N > sup(a_n) - \epsilon$

as a_n is increasing, for all n > N, $sup(a_n) - \epsilon < a_n \le sup(a_n) < sup(a_n) + \epsilon$

so we have $\lim_{n\to\infty} a_n = sup(a_n)$ as limit is unique, so we have $l = sup(a_n)$

if a_n is monotone decreasing and convergent, then $l = inf(a_n)$

Q12 (a) by definition, for all $\epsilon > 0$, there exist $m \ge n+1$ such that $a_{n+1} - \epsilon < x_m$

as $m \ge n+1$, we have $x_m \le a_n$ and hence $a_{n+1} - \epsilon < a_n$

as ϵ is arbitrary positive number, so we have $a_{n+1} \leq a_n$

so a_n is monotone decreasing. as x_n is bounded sequence, let $|x_n| \leq M$ for all M.

then $-M \leq x_m \leq a_{n+1}$

so a_n is bounded below and hence convergent.

(b) by definition, for all $\epsilon > 0$, there exist $m \ge n+1$ such that $b_{n+1} + \epsilon > x_m$

as $m \ge n+1$, we have $x_m \ge b_n$ and hence $b_{n+1} + \epsilon > b_n$

as ϵ is arbitrary positive number, so we have $b_{n+1} \geq b_n$

so b_n is monotone increasing. then $M \ge x_m \ge b_{n+1}$

so a_n is bounded above and hence convergent.

(i) $\lim \sup(-1)^n = 1$, $\lim \inf(-1)^n = -1$

(ii)
$$\lim \sup(\frac{1}{n}) = \lim \inf(\frac{1}{n}) = 0$$

(iii)
$$\lim \sup(-1)^n (1 - \frac{1}{n}) = 1$$
, $\lim \inf(-1)^n (1 - \frac{1}{n}) = -1$