MATH 2055

Suggested Solution to homework 3

Q2 I denotes the n-th term of each sequences by a_{n}
(a) bounded above by $\sup _{n \in \mathbb{N}} a_{n}=3$, bounded below by $\inf _{n \in \mathbb{N}} a_{n}=-2$, monotone increasing, $\lim _{n \rightarrow \infty} a_{n}=3$
(b) bounded above by $\sup _{n \in \mathbb{N}} a_{n}=2$, bounded below by $\inf _{n \in \mathbb{N}} a_{n}=1$, monotone decreasing, $\lim _{n \rightarrow \infty} a_{n}=1$
(c) $a_{n}=\frac{n}{1-\frac{1}{n+1}}=n+1$
no upper bound, bounded below by $\inf _{n \in \mathbb{N}} a_{n}=2$, monotone increasing, divergent
(d) bounded above by $\sup _{n \in \mathbb{N}} a_{n}=1$, bounded below by $\inf _{n \in \mathbb{N}} a_{n}=-1, \lim _{n \rightarrow \infty} a_{n}=0$
(e) bounded above by $\sup _{n \in \mathbb{N}} a_{n}=2$, bounded below by $\inf _{n \in \mathbb{N}} a_{n}=0, \lim _{n \rightarrow \infty} a_{n}=0$

Q3 (a) by definition, for all $\epsilon>0$, there exists m, such that $\sup _{n \in \mathbb{N}} a_{n} b_{n}-\epsilon<a_{m} b_{m}$ also, $0 \leq a_{m} \leq \sup _{n \in \mathbb{N}} a_{n}$ and $0 \leq b_{m} \leq \sup _{n \in \mathbb{N}} b_{n}$ as ϵ is arbitrary positive number, we have $\sup _{n \in \mathbb{N}} a_{n} b_{n} \leq\left(\sup _{n \in \mathbb{N}} a_{n}\right)\left(\sup _{n \in \mathbb{N}} b_{n}\right)$
the equality may not hold.
for example, we can pick
$a_{1}=1000, a_{n}=1$ for all $n>1$
$b_{1}=1, b_{n}=2$ for all $n>1$
then $\sup _{n \in \mathbb{N}} a_{n} b_{n}=1000$ while $\left(\sup _{n \in \mathbb{N}} a_{n}\right)\left(\sup _{n \in \mathbb{N}} b_{n}\right)=(1000)(2)=2000$
(b) by definition, for all $\epsilon>0$, there exists m, such that $\sup _{n \in \mathbb{N}}\left|a_{n}+b_{n}\right|-\epsilon<\left|a_{m}+b_{m}\right|$
by triangle inequality, $\left|a_{m}+b_{m}\right| \leq\left|a_{m}\right|+\left|b_{m}\right|$
also, $\left|a_{m}\right| \leq \sup _{n \in \mathbb{N}}\left|a_{n}\right|$ and $\left|b_{m}\right| \leq \sup _{n \in \mathbb{N}}\left|b_{n}\right|$
as ϵ is arbitrary positive number, we have $\sup _{n \in \mathbb{N}}\left|a_{n}+b_{n}\right| \leq \sup _{n \in \mathbb{N}}\left|a_{n}\right|+\sup _{n \in \mathbb{N}}\left|b_{n}\right|$
(c) by definition, for all $\epsilon>0$, there exists m, such that $\sup _{n \in \mathbb{N}} a_{n}-\epsilon<a_{m} \leq \sup _{n \in \mathbb{N}} a_{n}$
which imply $a_{m} \leq \sup _{n \in \mathbb{N}} a_{n}<a_{m}+\epsilon$
as $\left|a_{m}\right| \leq \sup _{n \in \mathbb{N}}\left|a_{n}\right|$ and
$\left|a_{m}+\epsilon\right| \leq\left|a_{m}\right|+\epsilon$
we have $\left|\sup _{n \in \mathbb{N}} a_{n}\right| \leq \max \left\{\left|a_{m}\right|,\left|a_{m}+\epsilon\right|\right\} \leq\left|a_{m}\right|+\epsilon \leq \sup _{n \in \mathbb{N}}\left|a_{n}\right|+\epsilon$
so $\left|\sup _{n \in \mathbb{N}} a_{n}\right| \leq \sup _{n \in \mathbb{N}}\left|a_{n}\right|$

Q6 (a) prove it by MI.
when $n=1,2 \leq x_{1}=2.5 \leq 3$
assume $2 \leq x_{k} \leq 3$ for some natural number k
then $4 \leq x_{k}^{2} \leq 9$
and hence $2 \leq a_{k+1}=\frac{1}{5}\left(x_{k}^{2}+6\right) \leq 3$
(b) $\frac{1}{5}\left(x_{n}-2\right)\left(x_{n}-3\right)=\left(\frac{1}{5}\right)\left(x_{n}^{2}-5 x_{n}+6\right)=x_{n+1}-x_{n}$
(c) as $2 \leq x_{n} \leq 3$
$x_{n}-2 \geq 0$ and $x_{n}-3 \leq 0$
imply $x_{n+1}-x_{n} \leq 0$
so $\left\{x_{n}\right\}$ is monotone decreasing. As it is bounded below, it is convergent.
let $x=\lim _{n \rightarrow \infty} x_{n}$
then $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{5}\left(x_{n}-2\right)\left(x_{n}-3\right)$
which imply $x=2$ or $x=3$
but x_{n} is decreasing and $x_{1}=2.5$, hence $x=2$

Q8 there exists N such that for all $n>N, a_{n}<l+1$
take $M=\max \left\{a_{1}, a_{2}, \cdots, a_{N}, l+1\right\}$
then $a_{n} \leq M$ for all n and hence $\left\{a_{n}\right\}$ is bounded above.
for all $\epsilon>0$, there exist N such that $a_{N}>\sup \left(a_{n}\right)-\epsilon$
as a_{n} is increasing, for all $n>N, \sup \left(a_{n}\right)-\epsilon<a_{n} \leq \sup \left(a_{n}\right)<\sup \left(a_{n}\right)+\epsilon$
so we have $\lim _{n \rightarrow \infty} a_{n}=\sup \left(a_{n}\right)$
as limit is unique, so we have $l=\sup \left(a_{n}\right)$
if a_{n} is monotone decreasing and convergent, then $l=\inf \left(a_{n}\right)$

Q12 (a) by definition, for all $\epsilon>0$, there exist $m \geq n+1$ such that $a_{n+1}-\epsilon<x_{m}$ as $m \geq n+1$, we have $x_{m} \leq a_{n}$ and hence $a_{n+1}-\epsilon<a_{n}$ as ϵ is arbitrary positive number, so we have $a_{n+1} \leq a_{n}$ so a_{n} is monotone decreasing. as x_{n} is bounded sequence, let $\left|x_{n}\right| \leq M$ for all M . then $-M \leq x_{m} \leq a_{n+1}$ so a_{n} is bounded below and hence convergent.
(b) by definition, for all $\epsilon>0$, there exist $m \geq n+1$ such that $b_{n+1}+\epsilon>x_{m}$ as $m \geq n+1$, we have $x_{m} \geq b_{n}$ and hence $b_{n+1}+\epsilon>b_{n}$ as ϵ is arbitrary positive number, so we have $b_{n+1} \geq b_{n}$ so b_{n} is monotone increasing. then $M \geq x_{m} \geq b_{n+1}$ so a_{n} is bounded above and hence convergent.
(i) $\lim \sup (-1)^{n}=1, \liminf (-1)^{n}=-1$
(ii) $\lim \sup \left(\frac{1}{n}\right)=\liminf \left(\frac{1}{n}\right)=0$
(iii) $\lim \sup (-1)^{n}\left(1-\frac{1}{n}\right)=1, \liminf (-1)^{n}\left(1-\frac{1}{n}\right)=-1$

