MATH 2055 Suggested Solution to homework 2 (Prepared by Ng Wing-Kit)

Q4 Suppose x_n converges to x, $\forall \epsilon > 0, \ \exists N \ , \ \text{such that} \ \forall n > N \ , \ |x_n - x| < \epsilon$

$$||x_n| - |x|| \le |x_n - x| \le \epsilon$$

 $\therefore \lim_{n \to \infty} |x_n| = |x|$

Converse is not true. Pick $x_{2m} = 1$ and $x_{2m+1} = -1$ for each natural number m, then (x_n) is divergent while $(|x_n|)$ converges to 1

Q5 As $\lim_{n\to\infty} a_n = 0$, by the $\epsilon - N$ definition of limit of sequence,

 $\forall \epsilon > 0$, $\exists N,$ such that $\forall n > N, \, |a_n - 0| < \epsilon.$

The above inequality implies, in particular that

$$a_n < \epsilon$$
.

(we have used one side of the two-sided inequalities $-\epsilon < a_n < \epsilon$).

Next, we estimate the 'distance' of b_n from zero, i.e.

$$|b_n - 0| = b_n \quad (\because 0 \le a_n \le b_n)$$

 $\le a_n$
 $\le \epsilon$

 $\therefore \lim_{n \to \infty} b_n = 0$

Q7 (a) the condition need to be satisfied for all $\epsilon > 0$

- (b) This statement is confusing. If there is a "," between "for some natural number N" and " where n > N" there is no problem. "for some natural number N where n > N" means that we have n first and then pick a particular N depending on n
- (c) It is correct, or more precisely, within ϵ neighbourhood of x
- (d) N is not defined and the sentence means that the following condition only true for n in a subset of $\{n|n > N\}$

- (e) " for some ϵ " \longrightarrow " for all ϵ " n is not defined when the statement define N if the sequence is not convergent, n may not exist and for all N, N < n automatically true. \Box
- Q8 (a) "ridiculous convergence" is stronger than the usual convergence

 $\exists N \text{ such that } \forall \epsilon > 0, \ |x_n - x| < \epsilon \text{ whenever } n > N$ $\implies \forall n > N, \ x_n = x$ $\implies x_n \text{ converge to } \mathbf{x}$

(b) $\forall N, N+1 > N,$ $|\frac{1}{N+1} - 0| = \frac{1}{N+1} > \frac{1}{N}$

 $\therefore \left(\frac{1}{n}\right)$ is not ridiculous converge to 0

Q9 Replace ϵ in the definition by $C\epsilon$.

Q12 for all natural number m,

$$\frac{m-1}{m} \leq \frac{m-\cos(m)}{m} \leq \frac{m+1}{m}$$

$$\det a_m = \frac{m-1}{m} \text{ and } b_m = \frac{m+1}{m}$$

$$\forall \epsilon > 0, \forall n > \frac{1}{\epsilon}$$

$$|a_n - 1| = \frac{1}{n} < \epsilon$$

$$|b_n - 1| = \frac{1}{n} < \epsilon$$

$$\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 1$$

$$\operatorname{as} a_n \leq \frac{n-\cos(n)}{n} \leq b_n$$

$$\therefore \lim_{n \to \infty} \frac{n-\cos(n)}{n} = 1$$

Q14 (a) As $r>1, {\rm for ~all ~natural number}~m$, if $r^{\frac{1}{m}}\leq 1,$ then $r\leq 1^m$ lead to contradiction. $\therefore r^{\frac{1}{m}}>1$

let $r\frac{1}{m} = 1 + c_m$ where $c_m > 0$ $(1 + c_m)^m = r$ $\therefore mc_m \le r - 1$ $\forall \epsilon > 0,$ $\forall n > \frac{r-1}{\epsilon},$ $|r\frac{1}{n} - 1| = c_m$ $\le \frac{r-1}{n}$ $< \epsilon$ $\therefore \lim_{n \to \infty} r^{\frac{1}{n}} = 1.$

(b) As $0 < r < 1, {\rm for ~all ~natural number}~m$, if $r^{\frac{1}{m}} \ge 1,$ then $r \ge 1^m$ leads to contradiction. $\therefore r^{\frac{1}{m}} < 1$

let
$$r^{\frac{1}{m}} = \frac{1}{1+s_m}$$
 where $s_m > 0$
 $\frac{1}{(1+s_m)^m} = r$
 $\therefore ms_m \le \frac{1}{r} - 1$
 $\forall \epsilon > 0,$
 $\forall n > \frac{\frac{1}{r} - 1}{\epsilon},$
 $|r^{\frac{1}{n}} - 1| = \frac{s_n}{1+s_n}$
 $< s_n$
 $\le \frac{\frac{1}{r} - 1}{n}$
 $< \epsilon$
 $\therefore \lim_{n \to \infty} r^{\frac{1}{n}} = 1.$

(c) for all natural number m>1 , let $m^{\frac{1}{m}}=1+b_m$ where $b_m>0$ $(1+b_m)^m=m$

$$C_2^m (b_m)^2 \le m$$
$$(b_m)^2 \le \frac{2}{m-1}$$
$$\forall \epsilon > 0,$$
$$\forall n > \frac{2}{\epsilon^2} + 1,$$
$$|n^{\frac{1}{n}} - 1| = b_n$$
$$\le \sqrt{\frac{2}{n-1}}$$

 $<\epsilon$

$$\therefore \lim_{n \to \infty} n^{\frac{1}{n}} = 1.$$