MATH 2055
Suggested Solution to homework 2
(Prepared by Ng Wing-Kit)
Q4 Suppose x_{n} converges to x ,
$\forall \epsilon>0, \exists N$, such that $\forall n>N,\left|x_{n}-x\right|<\epsilon$

$$
\left|\left|x_{n}\right|-|x|\right| \leq\left|x_{n}-x\right|
$$

$$
<\epsilon
$$

$\therefore \lim _{n \rightarrow \infty}\left|x_{n}\right|=|x|$
Converse is not true. Pick $x_{2 m}=1$ and $x_{2 m+1}=-1$ for each natural number m, then $\left(x_{n}\right)$ is divergent while $\left(\left|x_{n}\right|\right)$ converges to 1

Q5 As $\lim _{n \rightarrow \infty} a_{n}=0$, by the $\epsilon-N$ definition of limit of sequence,
$\forall \epsilon>0, \exists N$, such that $\forall n>N,\left|a_{n}-0\right|<\epsilon$.
The above inequality implies, in particular that

$$
a_{n}<\epsilon
$$

(we have used one side of the two-sided inequalities $-\epsilon<a_{n}<\epsilon$).

Next, we estimate the 'distance' of b_{n} from zero, i.e.

$$
\begin{aligned}
\left|b_{n}-0\right| & =b_{n} \quad\left(\because 0 \leq a_{n} \leq b_{n}\right) \\
& \leq a_{n} \\
& <\epsilon
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty} b_{n}=0$
Q7 (a) the condition need to be satisfied for all $\epsilon>0$
(b) This statement is confusing. If there is a " , " between "for some natural number N" and " where $n>N$ " there is no problem. "for some natural number N where $n>N$ " means that we have n first and then pick a particular N depending on n
(c) It is correct, or more precisely, within ϵ neighbourhood of x
(d) N is not defined and the sentence means that the following condition only true for n in a subset of $\{n \mid n>N\}$
(e) " for some ϵ " \longrightarrow "for all ϵ "
n is not defined when the statement define N
if the sequence is not convergent, n may not exist and for all $\mathrm{N}, N<n$ automatically true.
Q8 (a) "ridiculous convergence" is stronger than the usual convergence
$\exists N$ such that $\forall \epsilon>0,\left|x_{n}-x\right|<\epsilon$ whenever $n>N$
$\Longrightarrow \forall n>N, x_{n}=x$
$\Longrightarrow x_{n}$ converge to x
(b) $\forall N, N+1>N$,
$\left|\frac{1}{N+1}-0\right|=\frac{1}{N+1}>\frac{1}{N}$
$\therefore\left(\frac{1}{n}\right)$ is not ridiculous converge to 0
Q9 Replace ϵ in the definition by $C \epsilon$.

Q12 for all natural number m,

$$
\begin{aligned}
& \frac{m-1}{m} \leq \frac{m-\cos (m)}{m} \leq \frac{m+1}{m} \\
& \text { let } a_{m}=\frac{m-1}{m} \text { and } b_{m}=\frac{m+1}{m} \\
& \forall \epsilon>0, \forall n>\frac{1}{\epsilon} \\
& \left|a_{n}-1\right|=\frac{1}{n}<\epsilon \\
& \left|b_{n}-1\right|=\frac{1}{n}<\epsilon \\
& \therefore \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=1 \\
& \text { as } a_{n} \leq \frac{n-\cos (n)}{n} \leq b_{n} \\
& \therefore \lim _{n \rightarrow \infty} \frac{n-\cos (n)}{n}=1
\end{aligned}
$$

Q14 (a) As $r>1$, for all natural number m, if $r^{\frac{1}{m}} \leq 1$, then $r \leq 1^{m}$ lead to contradiction.
$\therefore r^{\frac{1}{m}}>1$
let $r^{\frac{1}{m}}=1+c_{m}$ where $c_{m}>0$
$\left(1+c_{m}\right)^{m}=r$
$\therefore m c_{m} \leq r-1$
$\forall \epsilon>0$,
$\forall n>\frac{r-1}{\epsilon}$,
$\left|r^{\frac{1}{n}}-1\right|=c_{m}$
$\leq \frac{r-1}{n}$
$<\epsilon$
$\therefore \lim _{n \rightarrow \infty} r^{\frac{1}{n}}=1$.
(b) As $0<r<1$,for all natural number m, if $r^{\frac{1}{m}} \geq 1$, then $r \geq 1^{m}$ leads to contradiction. $\therefore r^{\frac{1}{m}}<1$
let $r^{\frac{1}{m}}=\frac{1}{1+s_{m}}$ where $s_{m}>0$
$\frac{1}{\left(1+s_{m}\right)^{m}}=r$
$\therefore m s_{m} \leq \frac{1}{r}-1$
$\forall \epsilon>0$,
$\forall n>\frac{\frac{1}{r}-1}{\epsilon}$,
$\left|r^{\frac{1}{n}}-1\right|=\frac{s_{n}}{1+s_{n}}$
$<s_{n}$
$\leq \frac{\frac{1}{r}-1}{n}$
$<\epsilon$
$\therefore \lim _{n \rightarrow \infty} r^{\frac{1}{n}}=1$.
(c) for all natural number $m>1$, let $m^{\frac{1}{m}}=1+b_{m}$ where $b_{m}>0$
$\left(1+b_{m}\right)^{m}=m$
$C_{2}^{m}\left(b_{m}\right)^{2} \leq m$
$\left(b_{m}\right)^{2} \leq \frac{2}{m-1}$
$\forall \epsilon>0$,
$\forall n>\frac{2}{\epsilon^{2}}+1$,
$\left|n^{\frac{1}{n}}-1\right|=b_{n}$
$\leq \sqrt{\frac{2}{n-1}}$
$<\epsilon$
$\therefore \lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.

