# MATH 2010B Advanced Calculus I <br> (2014-2015, First Term) <br> Quiz 2 <br> Suggested Solution 

1. (a) Method 1:

$$
\begin{aligned}
& x z+y^{2}=0 \\
&\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0
\end{aligned}
$$

Let

$$
M=\left(\begin{array}{ccc}
0 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
\operatorname{det}(M-\lambda I) & =0 \\
\left(\lambda-\frac{1}{2}\right)\left(\lambda+\frac{1}{2}\right)(1-\lambda) & =0 \\
\lambda & =1, \frac{1}{2},-\frac{1}{2}
\end{aligned}
$$

And the corresponding orthonormal eigenvectors are

$$
v_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right) \quad \text { and } v_{3}=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right)
$$

Let

$$
R=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array} v_{3}\right]^{t}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right)
$$

And take the transformation

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=\left(\begin{array}{c}
v \\
(u+w) / \sqrt{2} \\
(u-w) / \sqrt{2}
\end{array}\right)
$$

Then we have

$$
u^{2}+\frac{1}{2} v^{2}-\frac{1}{2} w^{2}=0
$$

which is a cone.
Method 2:

$$
\begin{aligned}
x z+y^{2} & =0 \\
4 x z+4 y^{2} & =0 \\
(x+z)^{2}-(x-z)^{2}+4 y^{2} & =0
\end{aligned}
$$

Take $u=x+z, v=x-z, w=y$, then it becomes

$$
\begin{aligned}
u^{2}-v^{2}+4 w^{2} & =0 \\
u^{2}+4 w^{2} & =v^{2}
\end{aligned}
$$

Which is a cone.
(b) Put $z=x+y+1$ into $x z+y^{2}=0$, then

$$
\begin{aligned}
x(x+y+1)+y^{2} & =0 \\
x^{2}+x y+x+y^{2} & =0 \\
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)\binom{x}{y} & =0
\end{aligned}
$$

Take

$$
M=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
\operatorname{det}(M-\lambda I) & =0 \\
\left(\lambda-\frac{1}{2}\right)\left(\lambda-\frac{3}{2}\right) & =0 \\
\lambda & =\frac{1}{2}, \frac{3}{2}
\end{aligned}
$$

Thus $\lambda_{1} \lambda_{2}>0 \Rightarrow$ ellipse.
2. Method 1: Take the polar coordinate $x=r \cos \theta$ and $y=r \sin \theta$, then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{|y|}{\sqrt{x^{2}+y^{2}}} & =\lim _{r \rightarrow 0} \frac{|r \cos \theta|}{\sqrt{r^{2}}} \\
& =\lim _{r \rightarrow 0} \frac{|r||\cos \theta|}{|r|} \\
& =\lim _{r \rightarrow 0}|\cos \theta| \\
& =|\cos \theta|
\end{aligned}
$$

Therefore the limit does not exist since $|\cos \theta|$ varies for different value of $\theta$.
Method 2: Consider the limit along $x=0$ and $y=0$.
Along $x=0$, we have

$$
\lim _{\substack{(x, y) \rightarrow 0,0,0) \\ x=0}} \frac{|y|}{\sqrt{x^{2}+y^{2}}}=\lim _{y \rightarrow 0} \frac{|y|}{\sqrt{y^{2}}}=1 .
$$

Along $y=0$, we have

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}} \frac{|y|}{\sqrt{x^{2}+y^{2}}}=\lim _{x \rightarrow 0} \frac{0}{\sqrt{x^{2}}}=0 .
$$

Since the limits along two different paths are not the same, the limit does not exist.


