MATH 2010A/B Advanced Calculus I

(2014-2015, First Term)
Homework 11
Suggested Solution
37. From the figure and the hints, the area of a triangle inscribed in a unit circle is

$$
f(\alpha, \beta, \gamma)=\frac{1}{2}(1)^{2} \sin \alpha+\frac{1}{2}(1)^{2} \sin \beta+\frac{1}{2}(1)^{2} \sin \gamma=\frac{1}{2}(\sin \alpha+\sin \beta+\sin \gamma)
$$

subjected to the constraint

$$
\alpha+\beta+\gamma=2 \pi
$$

Let $h(\alpha, \beta, \gamma, \lambda)=f(\alpha, \beta, \gamma)+\lambda(\alpha+\beta+\gamma-2 \pi)$, then

$$
\frac{\partial h}{\partial \alpha}=\frac{1}{2} \cos \alpha+\lambda, \frac{\partial h}{\partial \beta}=\frac{1}{2} \cos \beta+\lambda, \frac{\partial h}{\partial \gamma}=\frac{1}{2} \cos \gamma+\lambda, \frac{\partial h}{\partial \lambda}=\alpha+\beta+\gamma-2 \pi
$$

Solve

$$
\begin{cases}\frac{1}{2} \cos \alpha+\lambda & =0 \ldots \ldots \ldots(1) \\ \frac{1}{2} \cos \beta+\lambda & =0 \ldots \ldots \ldots(2) \\ \frac{1}{2} \cos \gamma+\lambda & =0 \ldots \ldots \ldots(3) \\ \alpha+\beta+\gamma-2 \pi & =0 \ldots \ldots \ldots(4)\end{cases}
$$

Using (1) to (3) and the fact that $0<\alpha, \beta, \gamma<\pi$, we have $\alpha=\beta=\gamma$. Then from (4), we get $\alpha=\beta=\gamma=\frac{2 \pi}{3}$. Therefore, the angle at each vertex of the inscribed circle is $\frac{\pi}{3}$. So it is an equilateral triangle if it attains the maximum area.
38. Find maximum and minimum of

$$
f(x, y)=x^{2}+y^{2}
$$

subjected to

$$
x^{2}+x y+y^{2}=3
$$

Let $h(x, y)=x^{2}+x y+y^{2}-3$. Then $f_{x}=2 x, f_{y}=2 y, h_{x}=2 x+y, h_{y}=x+2 y$.
Next, we need to solve

$$
\begin{cases}f_{x} & =\lambda h_{x} \\ f_{y} & =\lambda h_{y} \\ h & =0\end{cases}
$$

That's to say,

$$
\begin{cases}2 x & =\lambda(2 x+y) \\ 2 y & =\lambda(x+2 y) \\ x^{2}+x y+y^{2} & =3\end{cases}
$$

We have

$$
\begin{cases}(2-2 \lambda) x-\lambda y & =0 \\ -\lambda x+(2-2 \lambda) y & =0 \\ x^{2}+x y+y^{2} & =3\end{cases}
$$

For non-zero solution (x, y), we must have

$$
\begin{aligned}
(2-2 \lambda)(2-2 \lambda)-\lambda^{2} & =0 \\
3 \lambda^{2}-8 \lambda+4 & =0 \\
(\lambda-2)(3 \lambda-2) & =0 \\
\lambda & =2 \text { or } \frac{2}{3}
\end{aligned}
$$

When $\lambda=2$, the system becomes,

$$
\begin{cases}-2 x-2 y & =0 \\ -2 x-2 y & =0 \\ x^{2}+x y+y^{2} & =3\end{cases}
$$

From the first two equations, we know that $y=-x$. Substitute back the last equation, we got $x^{2}=3 \Rightarrow x=-\sqrt{3}$ or $\sqrt{3}$. Then $y=\sqrt{3}$ or $-\sqrt{3}$. Then $f(-\sqrt{3}, \sqrt{3})=f(\sqrt{3},-\sqrt{3})=$ 6. When $\lambda=\frac{2}{3}$, the system becomes,

$$
\begin{cases}2 x-2 y & =0 \\ -2 x+2 y & =0 \\ x^{2}+x y+y^{2} & =3\end{cases}
$$

From the first two equations, we know that $y=x$. Substitute back the last equation, we got $3 x^{2}=3 \Rightarrow x=-1$ or 1 . Then $y=-1$ or 1 . Then $f(-1,-1)=f(1,1)=2$.
Therefore, the closet point is $(x, y)=(-1,-1)$ or $(1,1)$.
The farthest point is $(x, y)=(-\sqrt{3}, \sqrt{3})$ or $(\sqrt{3},-\sqrt{3})$.
42. Find maximum and minimum of

$$
f(x, y, z)=z
$$

subjected to

$$
z^{2}=x^{2}+y^{2} \quad \text { and } x+2 y+3 z=3
$$

Let $h(x, y, z)=x^{2}+y^{2}-z^{2}$ and $k(x, y, z)=x+2 y+3 z-3$.
Then $f_{x}=0, f_{y}=0, f_{z}=1 ; h_{x}=2 x, h_{y}=2 y, h_{z}=-2 z ; k_{x}=1, k_{y}=2, k_{z}=3$;
Then, we need to solve

$$
\left\{\begin{aligned}
f_{x} & =\lambda h_{x}+\mu k_{x} \\
f_{y} & =\lambda h_{y}+\mu k_{y} \\
f_{z} & =\lambda h_{z}+\mu k_{z} \\
h & =0 \\
k & =0
\end{aligned}\right.
$$

That is

$$
\begin{cases}0 & =2 \lambda x+\mu \\ 0 & =2 \lambda y+2 \mu \\ 1 & =-2 \lambda z+3 \mu \\ z^{2} & =x^{2}+y^{2} \\ x+2 y+3 z & =3\end{cases}
$$

Solving, we get $\lambda=\frac{\sqrt{5}}{6},-\frac{\sqrt{5}}{6} ; \mu=\frac{\sqrt{5}-3}{4}, \frac{-\sqrt{5}-3}{4}$;
$x=\frac{9 \sqrt{5}-12}{20}, \frac{-9 \sqrt{5}-12}{20} ; y=\frac{9 \sqrt{5}-15}{10}, \frac{-9 \sqrt{5}-15}{10}$ and $z=\frac{-3 \sqrt{5}+9}{4}, \frac{3 \sqrt{5}+9}{4}$.
Then $f\left(\frac{9 \sqrt{5}-12}{20}, \frac{9 \sqrt{5}-15}{10}, \frac{-3 \sqrt{5}+9}{4}\right)=\frac{-3 \sqrt{5}+9}{4}$, which is the lowest point.
And $f\left(\frac{-9 \sqrt{5}-12}{20}, \frac{-9 \sqrt{5}-15}{10}, \frac{3 \sqrt{5}+9}{4}\right)=\frac{3 \sqrt{5}+9}{4}$, which is the highest point.
48. Maximize

$$
A=f(x, y, z, \alpha)=\frac{1}{2} x y \sin \alpha
$$

subject to

$$
x+y+z=P \quad \text { and } \quad z^{2}=x^{2}+y^{2}-2 x y \cos \alpha
$$

Let $h(x, y, z)=x+y+z-P$ and $k(x, y, z)=x^{2}+y^{2}-2 x y \cos \alpha-z^{2}$.
Then $f_{x}=\frac{1}{2} y \sin \alpha, f_{y}=\frac{1}{2} x \sin \alpha, f_{z}=0, f_{\alpha}=\frac{1}{2} x y \cos \alpha$;
$h_{x}=1, h_{y}=1, h_{z}=1, h_{\alpha}=0$;
$k_{x}=2 x-2 y \cos \alpha, k_{y}=2 y-2 x \cos \alpha, k_{z}=-2 z, k_{\alpha}=2 x y \sin \alpha ;$
Then, we need to solve

$$
\begin{cases}f_{x} & =\lambda h_{x}+\mu k_{x} \\ f_{y} & =\lambda h_{y}+\mu k_{y} \\ f_{z} & =\lambda h_{z}+\mu k_{z} \\ f_{\alpha} & =\lambda h_{\alpha}+\mu k_{\alpha} \\ h & =0 \\ k & =0\end{cases}
$$

That is,

$$
\begin{cases}\frac{1}{2} y \sin \alpha & =\lambda+\mu(2 x-2 y \cos \alpha) \\ \frac{1}{2} x \sin \alpha & =\lambda+\mu(2 y-2 x \cos \alpha) \\ 0 & =\lambda+\mu(-2 z) \\ \frac{1}{2} x y \cos \alpha & =\mu(2 x y \sin \alpha) \\ x+y+z & =P \\ z^{2} & =x^{2}+y^{2}-2 x y \cos \alpha\end{cases}
$$

Solving, we will get $x=y=z$, which shows that the optimal such triangle is equilateral.
58. Note that the distance from a point (x, y, z) to the plane $2 x+3 y+z=10$ is

$$
D=\left|\frac{2 x+3 y+z-10}{\sqrt{2^{2}+3^{2}+1^{2}}}\right|=\left|\frac{2 x+3 y+z-10}{\sqrt{14}}\right|
$$

Therefore, alternatively, we need to find maximum and minimum of

$$
f(x, y, z)=14 D^{2}=(2 x+3 y+z-10)^{2}
$$

subjected to

$$
4 x^{2}+9 y^{2}+z^{2}=36
$$

Let $h(x, y)=4 x^{2}+9 y^{2}+z^{2}-36$.
Then $f_{x}=4(2 x+3 y+z-10), f_{y}=6(2 x+3 y+z-10), f_{z}=2(2 x+3 y+z-10)$. $h_{x}=8 x, f_{y}=18 y, f_{z}=2 z$.
Next, we need to solve

$$
\left\{\begin{aligned}
f_{x} & =\lambda h_{x} \\
f_{y} & =\lambda h_{y} \\
f_{z} & =\lambda h_{z} \\
h & =0
\end{aligned}\right.
$$

That is,

$$
\begin{cases}2 x+3 y+z-10 & =2 \lambda x \\ 2 x+3 y+z-10 & =3 \lambda y \\ 2 x+3 y+z-10 & =\lambda z \\ 4 x^{2}+9 y^{2}+z^{2} & =36\end{cases}
$$

Solving, we get $x= \pm \sqrt{3}, y= \pm \frac{2 \sqrt{3}}{3}, z= \pm 2 \sqrt{3}$.
$f\left(\sqrt{3}, \frac{2 \sqrt{3}}{3}, 2 \sqrt{3}\right)=(6 \sqrt{3}-10)^{2}$, which is the closest point.
$f\left(-\sqrt{3},-\frac{2 \sqrt{3}}{3},-2 \sqrt{3}\right)=(-6 \sqrt{3}-10)^{2}$, which is the farthest point.
60. Find maximum and minimum of

$$
f(x, y, z)=z
$$

subjected to

$$
4 x+9 y+z=0 \quad \text { and } \quad z=2 x^{2}+3 y^{2}
$$

Let $h(x, y, z)=4 x+9 y+z$ and $k(x, y, z)=2 x^{2}+3 y^{2}-z$.
Then $f_{x}=0, f_{y}=0, f_{z}=1 ; h_{x}=4, h_{y}=9, h_{z}=1 ; k_{x}=4 x, k_{y}=6 y, k_{z}=-1$;
Then, we need to solve

$$
\begin{cases}f_{x} & =\lambda h_{x}+\mu k_{x} \\ f_{y} & =\lambda h_{y}+\mu k_{y} \\ f_{z} & =\lambda h_{z}+\mu k_{z} \\ h & =0 \\ k & =0\end{cases}
$$

That is

$$
\begin{cases}0 & =4 \lambda+4 \mu x \\ 0 & =9 \lambda+6 \mu y \\ 1 & =\lambda-\mu \\ 4 x+9 y+z & =0 \\ z & =2 x^{2}+3 y^{2}\end{cases}
$$

Solving, we get $\lambda=0,2 ; \mu=-1,1$;
$x=0,-2 ; y=0,-3$ and $z=0,35$.
Then $f(0,0,0)=0$, which is the lowest point.
And $f(-2,-3,-35)=35$, which is the highest point.
62. (a) Minimize

$$
f(\mathbf{x})=x_{1}+x_{2}+\cdots+x_{n}
$$

subject to the constraint

$$
x_{1} x_{2} \cdots x_{n}=1
$$

Let $h(\mathbf{x})=x_{1} x_{2} \cdots x_{n}-1$. Then $f_{x_{i}}=1$ and $h_{x_{i}}=x_{1} x_{2} \cdots x_{i-1} x_{i+1} \cdots x_{n}, 1 \leq i \leq n$ We need to solve

$$
\begin{cases}f_{x_{i}} & =\lambda h_{x_{i}}, \quad 1 \leq i \leq n \\ h & =0\end{cases}
$$

That is

$$
\begin{cases}\lambda x_{1} x_{2} \cdots x_{i-1} x_{i+1} \cdots x_{n} & =1, \quad 1 \leq i \leq n \\ x_{1} x_{2} \cdots x_{n} & =1\end{cases}
$$

Multiply the first equation by x_{i} and use second equation, we get $\lambda=x_{i}, 1 \leq i \leq n$. Therefore, $x_{1}=x_{2}=\cdots=x_{n}$. Since x_{i} is positive, therefore, $x_{i}=1$. So minimum value if n.
(b) If $x_{i}=\frac{a_{i}}{\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}}$, then $x_{1} x_{2} \cdots x_{n}=1$. Therefore, by (a), we have

$$
\begin{aligned}
n & \leq x_{1}+x_{2}+\cdots x_{n} \\
n & \leq \frac{a_{1}+a_{2}+\cdots a_{n}}{\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}} \\
\sqrt[n]{a_{1} a_{2} \cdots a_{n}} & \leq \frac{a_{1}+a_{2}+\cdots a_{n}}{n}
\end{aligned}
$$

