MATH 2010A/B Advanced Calculus I

(2014-2015, First Term)
Homework 10
Suggested Solution
15. $f(x, y)=3 x^{2}+6 x y+2 y^{3}+12 x-24 y$.
$f_{x}=6 x+6 y+12 ; f_{y}=6 x+6 y^{2}-24$.
$f_{x x}=6 ; f_{x y}=6 ; f_{y y}=12 y$.
Solving

$$
\left\{\begin{array}{l}
6 x+6 y+12=0 \\
6 x+6 y^{2}-24=0
\end{array}\right.
$$

We have $(x, y)=(0,-2),(-5,3)$.
At $(x, y)=(0,-2), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=180>0$. Thus $(0,-2)$ is a saddle point.
At $(x, y)=(-5,3), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=-180<0$ and $f_{x x}=6>0$. Thus $(-5,3)$ is a local minimum point with value $f(-5,3)=-93$. This is the only local minimum point, thus it is also the global minimum point.
20. $f(x, y)=2 x^{3}+y^{3}-3 x^{2}-12 x-3 y$.
$f_{x}=6 x^{2}-6 x-12 ; f_{y}=3 y^{2}-3$.
$f_{x x}=12 x-6 ; f_{x y}=0 ; f_{y y}=6 y$.
Solving

$$
\begin{cases}6 x^{2}-6 x-12 & =0 \\ 3 y^{2}-3 & =0\end{cases}
$$

We have $(x, y)=(2,1),(-1,1),(2,-1),(-1,-1)$.
At $(x, y)=(2,1), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=-108<0$ and $f_{x x}=18>0$. Thus $(2,1)$ is a local minimum point with value $f(2,1)=-22$.
At $(x, y)=(-1,1), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=108>0$. Thus $(-1,1)$ is a saddle point.
At $(x, y)=(2,-1), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=108>0$. Thus $(2,-1)$ is a saddle point.
At $(x, y)=(-1,-1), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=-108<0$ and $f_{x x}=-18<0$. Thus $(-1,-1)$ is a local maximum point with value $f(-1,-1)=9$.
In conclusion, $(2,1)$ is the global minimum point and $(-1,-1)$ is the global maximum point.
23. $f(x, y)=x^{4}+y^{4}$.
$f_{x}=4 x^{3} ; f_{y}=4 y^{3}$.
$f_{x x}=12 x^{2} ; f_{x y}=0 ; f_{y y}=12 y^{2}$.
Then at $(x, y)=(0,0), \Delta=f_{x x} f_{y y}-f_{x y}^{2}=0$.
When $|x|,|y| \rightarrow \infty, f(x, y) \rightarrow \infty$. Thus f is open upwards and $(0,0)$ is the global minimum point with value $f(0,0)=0$.
25. $f(x, y)=e^{-x^{4}-y^{4}}$.
$f_{x}=-4 x^{3} e^{-x^{4}-y^{4}} ; f_{y}=-4 y^{3} e^{-x^{4}-y^{4}}$.
$f_{x x}=4 x^{2} e^{-x^{4}-y^{4}}\left(4 x^{4}-3\right) ; f_{x y}=16 x^{3} y^{3} \exp \left(-x^{4}-y^{4}\right) ; f_{y y}=4 y^{2} e^{-x^{4}-y^{4}}\left(4 y^{4}-3\right)$.
Then at $(x, y)=(0,0), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=0$.
Note that $e^{x^{4}+y^{4}} \geq 1$ for any (x, y). Thus $e^{-x^{4}-y^{4}} \leq 1=f(0,0)$ for any (x, y). Therefore, $(0,0)$ is the global maximum point with value 1.
31. $f(x, y)=\sin \frac{\pi x}{2} \sin \frac{\pi y}{2}$.
$f_{x}=\frac{\pi}{2} \cos \frac{\pi x}{2} \sin \frac{\pi y}{2} ; f_{y}=\frac{\pi}{2} \sin \frac{\pi x}{2} \cos \frac{\pi y}{2}$.
$f_{x x}=-\frac{\pi^{2}}{4} \sin \frac{\pi x}{2} \sin \frac{\pi y}{2} ; f_{x y}=\frac{\pi^{2}}{4} \cos \frac{\pi x}{2} \cos \frac{\pi y}{2} ; f_{y y}=-\frac{\pi^{2}}{4} \sin \frac{\pi x}{2} \sin \frac{\pi y}{2}$.
Solving

$$
\left\{\begin{array}{l}
\frac{\pi}{2} \cos \frac{\pi x}{2} \sin \frac{\pi y}{2}=0 \\
\frac{\pi}{2} \sin \frac{\pi x}{2} \cos \frac{\pi y}{2}=0
\end{array}\right.
$$

$(x, y)=(4 m \pm 1,4 n \pm 1), m, n \in \mathbb{Z}$ or $(x, y)=(2 m, 2 n), m, n \in \mathbb{Z}$.
When $(x, y)=(4 m \pm 1,4 n \pm 1), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=-\frac{\pi^{4}}{16}<0$.
Case 1: $(x, y)=(4 m+1,4 n+1)$, then $f_{x x}=-\frac{\pi^{2}}{2}<0$. Thus local maximum point with value $f(4 m+1,4 n+1)=1$.
Case 2: $(x, y)=(4 m-1,4 n-1)$, then $f_{x x}=-\frac{\pi^{2}}{2}<0$. Thus local maximum point with value $f(4 m-1,4 n-1)=1$.
Case 3: $(x, y)=(4 m+1,4 n-1)$, then $f_{x x}=\frac{\pi^{2}}{2}>0$ Thus local minimum point with value $f(4 m+1,4 n-1)=-1$.
Case 4: $(x, y)=(4 m-1,4 n+1)$, then $f_{x x}=\frac{\pi^{2}}{2}>0$ Thus local minimum point with value $f(4 m+1,4 n+1)=-1$.
When $(x, y)=(2 m, 2 n), \triangle=f_{x y}^{2}-f_{x x} f_{y y}=\frac{\pi^{4}}{4}>0$. Thus saddle point.

Exercises 14.9

7. $f(x, y)=\sin \left(x^{2}+y^{2}\right)$.
$f_{x}=2 x \cos \left(x^{2}+y^{2}\right) ; f_{y}=2 y \cos \left(x^{2}+y^{2}\right)$.
$f_{x x}=2 \cos \left(x^{2}+y^{2}\right)-4 x^{2} \sin \left(x^{2}+y^{2}\right) ; f_{x y}=-4 x y \sin \left(x^{2}+y^{2}\right) ; f_{y y}=2 \cos \left(x^{2}+y^{2}\right)-$ $4 y^{2} \sin \left(x^{2}+y^{2}\right)$.
The quadratic approximation at the origin is

$$
\begin{aligned}
f(x, y) & =f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2}\left(x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right) \\
& =0+x \cdot 0+y \cdot 0+\frac{1}{2}\left(x^{2} \cdot 2+2 x y \cdot 0+y^{2} \cdot 2\right) \\
& =x^{2}+y^{2}
\end{aligned}
$$

9. $f(x, y)=\frac{1}{1-x-y}$.
$f_{x}=\frac{1}{(1-x-y)^{2}} ; f_{y}=\frac{1}{(1-x-y)^{2}}$.
$f_{x x}=\frac{2}{(1-x-y)^{3}} ; f_{x y}=\frac{2}{(1-x-y)^{3}} ; f_{y y}=\frac{2}{(1-x-y)^{3}}$.

The quadratic approximation at the origin is

$$
\begin{aligned}
f(x, y) & =f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2}\left(x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right) \\
& =1+x+y+\left(x^{2}+2 x y+y^{2}\right) \\
& =1+(x+y)+(x+y)^{2}
\end{aligned}
$$

