MATH2010 Advanced Calculus I, 2014-15

Homework 07

1. Find the linear approximation $L(x, y)$ of the function $f(x, y)$ at each point
(a) $f(x, y)=e^{x} \cos y$ at $(0, \pi / 2)$
(b) $f(x, y)=x^{3} y^{4}$ at $(1,1)$
2. Similar to the lecture,

$$
L(x, y, z)=f\left(P_{0}\right)+f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-y_{0}\right)+f_{z}\left(P_{0}\right)\left(z-z_{0}\right)
$$

is called the linear approximation of $f(x, y, z)$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$. Find the linear approximation $L(x, y, z)$ of the function $f(x, y, z)$ at each point.
(a) $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(1,1,0)$
(b) $f(x, y, z)=e^{x}+\cos (y+z)$ at $\left(0, \frac{\pi}{2}, 0\right)$
3. Let

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{4}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist, but f is not differentiable at $(0,0)$. (Hint: Show that f is not continuous at $(0,0)$.)
4. Let

$$
f(x, y)= \begin{cases}0, & x^{2}<y<2 x^{2} \\ 1, & \text { otherwise }\end{cases}
$$

Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist, but f is not differentiable at $(0,0)$.
5. Let

$$
f(x, y)= \begin{cases}y^{2}+x^{2} \sin \frac{1}{x}, & x \neq 0 \\ y^{2}, & x=0\end{cases}
$$

Show that f is differentiable at $(0,0)$, but is not continuously differentiable in any neighbourhood of $(0,0)$ by proving that $f_{x}(x, y)$ is not continuous at $(0,0)$.

