MATH 2010A/B Advanced Calculus I

(2014-2015, First Term)

Homework 6

Suggested Solution
9. $z=3 x^{2}+12 x+4 y^{3}-6 y^{2}+5 \cdot \frac{d z}{d x}=6 x+12 \cdot \frac{d z}{d y}=12 y^{2}-12 y$.

Solving

$$
\begin{cases}6 x+12 & =0 \\ 12 y^{2}-12 y & =0\end{cases}
$$

We have $(x, y)=(-2,0),(-2,1)$. Then $z=-7,-9$ respectively. So $(-2,0,-7),(-2,1,-9)$ are points at which the tangent plane is horizontal.
11. $z=\left(2 x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$.
$\frac{d z}{d x}=4 x e^{-x^{2}-y^{2}}+\left(2 x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}(-2 x)=2 x\left(2-2 x^{2}-3 y^{2}\right) e^{-x^{2}-y^{2}}$.
$\frac{d z}{d y}=6 y e^{-x^{2}-y^{2}}+\left(2 x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}(-2 y)=2 y\left(3-2 x^{2}-3 y^{2}\right) e^{-x^{2}-y^{2}}$.
Solving

$$
\left\{\begin{array}{l}
2 x\left(2+x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}=0 \\
2 y\left(3+x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}=0
\end{array}\right.
$$

We have $(x, y)=(0,0),(0,1),(0,-1),(-1,0),(1,0)$. Then $z=0,3 e^{-1}, 3 e^{-1}, 2 e^{-1}, 2 e^{-1}$, Therefore, $(0,0,0),\left(0,1,3 e^{-1}\right),\left(0,-1,3 e^{-1}\right),\left(-1,0,2 e^{-1}\right),\left(1,0,2 e^{-1}\right)$ are the points at which the tangent plane is horizontal.
13. $z=x^{2}-2 x+y^{2}-2 y+3$.
$z_{x}=2 x-2, z_{y}=2 y-2, z_{x x}=2, z_{y y}=2, z_{x y}=0$.
Solving

$$
\left\{\begin{array}{l}
2 x-2=0 \\
2 y-2=0
\end{array}\right.
$$

We get the point $(x, y)=(1,1)$. Then $z=1$.
Method 1: Note that x^{2} and y^{2} dominate z, thus when $|x|,|y| \rightarrow \infty \Rightarrow z \rightarrow \infty$. Therefore, it is open upward. So $(1,1,1)$ is the lowest point.

Method 2: At this point, $z_{x x}(1,1)=2>0$ and $D=z_{x x} z_{y y}-z_{x y}^{2}=(2)(2)-0=4>0$. Therefore, $(1,1,1)$ is the local minimum point, and thus the lowest point.
16. $z=4 x y-x^{4}-y^{4}$.
$z_{x}=4 y-4 x^{3}, z_{y}=4 x-4 y^{3}, z_{x x}=-12 x^{2}, z_{y y}=-12 y^{2}, z_{x y}=4$.
Solving

$$
\left\{\begin{array}{l}
4 y-4 x^{3}=0 \\
4 x-4 y^{3}=0
\end{array}\right.
$$

We get the points $(x, y)=(0,0),(-1,-1)$ and $(1,1)$. Then $z=0,2,2$.

Method 1: Note that $-x^{4}$ and $-y^{4}$ dominate z, thus when $|x|,|y| \rightarrow \infty \Rightarrow z \rightarrow-\infty$. Therefore, it is open downward. So $(0,0,2)$ and $(-1,-1,2)$ are the highest points.

Method 2: At $(x, y)=(0,0), D(0,0)=z_{x x}(0,0) z_{y y}(0,0)-z_{x y}^{2}(0,0)=(0)(0)-4^{2}=16<$ 0 , therefore, $(0,0,0)$ is the saddle point.
At $(x, y)=(-1,-1), z_{x x}(-1,-1)=-12<0$ and $D(-1,-1)=z_{x x}(-1,-1) z_{y y}(-1,-1)-$ $z_{x y}^{2}(-1,-1)=(-12)(-12)-4^{2}=128>0$, therefore, $(-1,-1,2)$ is the highest point.
At $(x, y)=(1,1), z_{x x}(1,1)=-12<0$ and $D(1,1)=z_{x x}(1,1) z_{y y}(1,1)-z_{x y}^{2}(1,1)=$ $(-12)(-12)-4^{2}=128>0$, therefore, $(1,1,2)$ is also the highest point.
22. $z=\left(1+x^{2}\right) e^{-x^{2}-y^{2}}$.
$z_{x}=2 x e^{-x^{2}-y^{2}}+\left(1+x^{2}\right) e^{-x^{2}-y^{2}}(-2 x)=-2 x^{3} e^{-x^{2}-y^{2}}$.
$z_{y}=-2 y\left(x^{2}+1\right) e^{-x^{2}-y^{2}}$.
$z_{x x}=-6 x^{2} e^{-x^{2}-y^{2}}-2 x^{3} e^{-x^{2}-y^{2}}(-2 x)=2 x^{2}\left(2 x^{2}-3\right) e^{-x^{2}-y^{2}}$.
$z_{y y}=-2\left(1+x^{2}\right) e^{-x^{2}-y^{2}}-2 y\left(1+x^{2}\right) e^{-x^{2}-y^{2}}(-2 y)=2\left(x^{2}+1\right)\left(2 y^{2}-1\right) e^{-x^{2}-y^{2}}$.
$z_{x y}=-2 x^{3} e^{-x^{2}-y^{2}}(-2 y)=4 x^{3} y e^{-x^{2}-y^{2}}$.
Solving

$$
\begin{cases}z_{x}=-2 x^{3} e^{-x^{2}-y^{2}} & =0 \\ z_{y}=-2 y\left(x^{2}+1\right) e^{-x^{2}-y^{2}} & =0\end{cases}
$$

We get the point $(x, y)=(0,0)$. Then $z=1$.
Note that $e^{-x^{2}-y^{2}}$ dominates z, thus when $x^{2}+y^{2} \rightarrow \infty, z \rightarrow 0$. Therefore, it is open downward. So $(0,0,1)$ is the highest point.
23. $f(x, y)=x+2 y ; R$ is the square with the vertices at $(\pm 1, \pm 1)$.
$f_{x}=1$ and $f_{y}=2$. Since $f_{x} \neq 0$ and $f_{y} \neq 0$, therefore no interior points can be maximum or minimum points.
Consider on the boundary,
Case 1: $x=-1$ and $-1 \leq y \leq 1$,
Let $g(y)=f(-1, y)=-1+2 y$, then $g_{y}=2 \neq 0, g(-1)=-3, g(1)=1$.
Case 2: $x=1$ and $-1 \leq y \leq 1$,
Let $g(y)=f(1, y)=1+2 y$, then $g_{y}=2 \neq 0, g(-1)=-1, g(1)=3$.
Case 3: $y=-1$ and $-1 \leq x \leq 1$,
Let $h(x)=f(x,-1)=x-2$, then $h_{x}=1 \neq 0, h(-1)=-3, h(1)=-1$.
Case 4: $y=1$ and $-1 \leq x \leq 1$,
Let $h(x)=f(x, 1)=x+2$, then $h_{x}=1 \neq 0, h(-1)=1, h(1)=3$.
Therefore, the maximum value is 3 and minimum value is -3 .
24. $f(x, y)=x^{2}+y^{2}-x ; R$ is the square with the vertices at $(\pm 1, \pm 1)$.
$f_{x}=2 x-1$ and $f_{y}=2 y$. Set $f_{x}=f_{y}=0$, we get $(x, y)=\left(\frac{1}{2}, 0\right)$, then $f\left(\frac{1}{2}, 0\right)=-\frac{1}{4}$
Consider on the boundary,
Case 1: $x=-1$ and $-1 \leq y \leq 1$,
Let $g(y)=f(-1, y)=y^{2}+2$, then $g_{y}=2 y, g_{y}=0 \Rightarrow y=0$. Then $g(0)=2, g(-1)=$ $3, g(1)=3$.
Case 2: $x=1$ and $-1 \leq y \leq 1$,
Let $g(y)=f(1, y)=y^{2}$, then $g_{y}=2 y, g_{y}=0 \Rightarrow y=0$. Then $g(0)=0, g(-1)=1, g(1)=$
1.

Case 3: $y=-1$ and $-1 \leq x \leq 1$,
Let $h(x)=f(x,-1)=x^{2}-x+1$, then $h_{x}=2 x-1, h_{x}=0 \Rightarrow x=\frac{1}{2}$. Then $h\left(\frac{1}{2}\right)=$ $\frac{3}{4}, h(-1)=3, h(1)=1$.
Case 4: $y=1$ and $-1 \leq x \leq 1$,
Let $h(x)=f(x, 1)=x^{2}-x+1$, then $h_{x}=2 x-1, h_{x}=0 \Rightarrow x=\frac{1}{2}$. Then $h\left(\frac{1}{2}\right)=$ $\frac{3}{4}, h(-1)=3, h(1)=1$.
Therefore, the maximum value is 3 and minimum value is $-\frac{1}{4}$.
28. $f(x, y)=x y^{2} ; R$ is the circular disk $x^{2}+y^{2} \leq 3$.
$f_{x}=y^{2}$ and $f_{y}=2 x y$. Set $f_{x}=f_{y}=0$, we get $(x, y)=\left(x_{0}, 0\right)$ for any $x_{0}^{2} \leq 3$, then $f\left(x_{0}, 0\right)=0$.
Consider on the boundary $x^{2}+y^{2}=3$, we have $y^{2}=3-x^{2},-\sqrt{3} \leq x \leq \sqrt{3}$,
Let $h(x)=f(x, y)=x\left(3-x^{2}\right)=3 x-x^{3}$, then $h_{x}=3-3 x^{2}, h_{x}=0 \Rightarrow x= \pm 1$. Then $h(-1)=-2, h(1)=2$. Also, $h(-\sqrt{3})=0, h(\sqrt{3})=0$.
Therefore, the maximum value is 2 and minimum value is -2 .
33. Find the first-octant point $P(x, y, z)$ on the surface $x^{2} y^{2} z=4$ closest to the given fixed point $Q(0,0,0)$.
From the question, we need to minimize

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}
$$

Subject to the constraint

$$
g(x, y, z)=x^{2} y^{2} z-4=0
$$

Method 1: From the constraint, we get $z=\frac{4}{x^{2} y^{2}}$, therefore

$$
h(x, y)=f\left(x, y, \frac{4}{x^{2} y^{2}}\right)=x^{2}+y^{2}+\frac{16}{x^{4} y^{4}}
$$

Then, $h_{x}=2 x-\frac{64}{x^{5} y^{4}}, h_{y}=2 y-\frac{64}{x^{4} y^{5}}$. Solving

$$
\left\{\begin{array}{l}
2 x-\frac{64}{x^{5} y^{4}}=0 \\
2 y-\frac{64}{x^{4} y^{5}}=0
\end{array}\right.
$$

We have $(x, y)=(\sqrt{2}, \sqrt{2})$ and $z=1$. Note that when $|x|,|y| \rightarrow \infty, h \rightarrow \infty$. Therefore it is open upward. So $(\sqrt{2}, \sqrt{2}, 1)$ is the lowest point.

Method 2: Lagrange multiplier method:
Let $h(x, y, z)=f(x, y, z)+\lambda g(x, y, z)$,

Then $h_{x}=2 x+\lambda 2 x y^{2} z, h_{y}=2 y+\lambda 2 x^{2} y z, h_{z}=2 z+\lambda x^{2} y^{2}, h_{\lambda}=g(x, y, z)$.
We now need to solve the system,

$$
\begin{cases}2 x+2 \lambda x y^{2} z & =0 \ldots \tag{1}\\ 2 y+2 \lambda x^{2} y z & =0 \ldots \\ 2 z+\lambda x^{2} y^{2} & =0 \ldots \\ x^{2} y^{2} z-4 & =0 \ldots\end{cases}
$$

From (4), we know that $x \neq 0, y \neq 0$ and $z \neq 0$. Therefore, from (3), $\lambda \neq 0$. Then the system becomes,

$$
\begin{cases}1+\lambda y^{2} z & =0 \ldots \ldots \ldots \ldots(1) \\ 1+\lambda x^{2} z & =0 \ldots \ldots \ldots .(2) \\ 2 z+\lambda x^{2} y^{2} & =0 \ldots \ldots \ldots . .(3) \\ x^{2} y^{2} z-4 & =0 \ldots \ldots \ldots . .(4)\end{cases}
$$

From (1) and (2), we have $1+\lambda y^{2} z=1+\lambda x^{2} z \Rightarrow x=y$, then the system reduces to

$$
\begin{cases}1+\lambda x^{2} z & =0 . . \tag{1}\\ 2 z+\lambda x^{4} & =0 . \\ x^{4} z-4 & =0 .\end{cases}
$$

From (3), $z=\frac{4}{x^{4}}$. Substitute this into (1) and (2), the system reduces to

$$
\left\{\begin{array}{l}
x^{2}+4 \lambda=0 . \tag{1}\\
8+\lambda x^{8}=0 .
\end{array}\right.
$$

From (1), $x^{2}=-4 \lambda$, substitute this into (2), $8+256 \lambda^{5}=0 \Rightarrow \lambda=-\frac{1}{2}$.
Then, $x=\sqrt{2}, y=\sqrt{2}, z=1$ is the required point.
Therefore the required point is $(\sqrt{2}, \sqrt{2}, 1)$.
56. From the question, we need to maximize

$$
f(x, y, z)=x y z
$$

Subject to the constraint

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}-L^{2}=0
$$

Method 1: Note that $f^{2}=x^{2} y^{2} z^{2}$, then from the constraint, we get

$$
h(x, y)=f^{2}=x^{2} y^{2}\left(L^{2}-x^{2}-y^{2}\right)=L^{2} x^{2} y^{2}-x^{4} y^{2}-x^{2} y^{4}
$$

Therefore, $h_{x}=2 L^{2} x y^{2}-4 x^{3} y^{2}-2 x y^{4}, h_{y}=2 L^{2} x^{2} y-2 x^{4} y-4 x^{2} y^{3}$. Solving

$$
\left\{\begin{array}{l}
2 L^{2} x y^{2}-4 x^{3} y^{2}-2 x y^{4}=0 \\
2 L^{2} x^{2} y-2 x^{4} y-4 x^{2} y^{3}=0
\end{array}\right.
$$

We have $(x, y)=\left(\frac{L}{\sqrt{3}}, \frac{L}{\sqrt{3}}\right)$ and $z=\frac{L}{\sqrt{3}}$. Note that when $|x|,|y| \rightarrow \infty, h \rightarrow-\infty$. Therefore it is open downward. So $(x, y, z)=\left(\frac{L}{\sqrt{3}}, \frac{L}{\sqrt{3}}, \frac{L}{\sqrt{3}}\right)$ is the highest point.

Method 2: Lagrange multiplier method:
Let $h(x, y, z)=f(x, y, z)+\lambda g(x, y, z)$,
Then $h_{x}=y z+2 \lambda x, h_{y}=x z+2 \lambda y, h_{z}=x y+2 \lambda z, h_{\lambda}=g(x, y, z)$.
We now need to solve the system,

$$
\begin{cases}y z+2 \lambda x & =0 \ldots \ldots \ldots \ldots \cdot(1) \tag{1}\\ z x+2 \lambda y & =0 \ldots \ldots \ldots \ldots \cdot(2 \\ x y+2 \lambda z & =0 \ldots \ldots \ldots \ldots \\ x^{2}+y^{2}+z^{2}-L^{2} & =0 \ldots \ldots \ldots \ldots\end{cases}
$$

We then have

$$
\begin{cases}x y z+2 \lambda x^{2} & =0 \ldots \tag{1}\\ x y z+2 \lambda y^{2} & =0 \ldots \\ x y z+2 \lambda z^{2} & =0 \ldots \\ x^{2}+y^{2}+z^{2}-L^{2} & =0 \ldots\end{cases}
$$

Note that $\lambda \neq 0$ since $x, y, z>0$. From (1), (2) and (3), we know that $x=y=z$, substitute into (4), $x=y=z=\frac{L}{\sqrt{3}}$. Therefore, the maximum possible volume is $\frac{\sqrt{3} L^{3}}{9}$.
68. $f(x, y, z)=x^{2}-6 x y+y^{2}+2 y z+z^{2}+12$.
$f_{x}=2 x-6 y, f_{y}=-6 x+2 y+2 z, f_{z}=2 y+2 z$.
Solving the following system,

$$
\begin{cases}2 x-6 y & =0 \\ -6 x+2 y+2 z & =0 \\ 2 y+2 z & =0\end{cases}
$$

We get $(x, y, z)=(0,0,0)$.

Method 1: $f(0,0,0)=12$, but $f(1,1,1)=11$ and $f(0,0,1)=13$. Therefore, $(0,0,0)$ is a saddle point. So the function has no extrema, local or global.

Method 2: Second derivative test with Hessian Matrix:
$f_{x x}=2, f_{y y}=2, f_{z z}=2, f_{x y}=f_{y x}=-6, f_{x z}=f_{z x}=0, f_{y z}=f_{z y}=2$. Then the Hessian matrix at $(x, y, z)=(0,0,0)$ is

$$
H=\left(\begin{array}{lll}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right)=\left(\begin{array}{ccc}
2 & -6 & 0 \\
-6 & 2 & 2 \\
0 & 2 & 2
\end{array}\right)
$$

Compute the eigenvalues of the Hessian matrix, we get the eigenvalues are $2-\sqrt{40}, 2,2+$ $\sqrt{40}$ which has different signs. Therefore, $(0,0,0)$ is a saddle point. So the function has no extrema, local or global.
69. $f(x, y, z)=x^{4}-8 x^{2} y^{2}+y^{4}+z^{4}+12$.
$f_{x}=4 x^{3}-16 x y^{2}, f_{y}=4 y^{3}-16 x^{2} y, f_{z}=4 z^{3}$.
Solving the following system,

$$
\begin{cases}4 x^{3}-16 x y^{2} & =0 \\ 4 y^{3}-16 x^{2} y & =0 \\ 4 z^{3} & =0\end{cases}
$$

We get $(x, y, z)=(0,0,0)$. Note that $f(0,0,0)=12$, also we can compute $f(1,1,1)=7$ and $f(1,0,0)=13$. Therefore, $(0,0,0)$ is not a maximum or minimum point. So the function has no extrema, local or global.

