MATH 2010A/B Advanced Calculus I

(2014-2015, First Term)
Homework 2
Suggested Solution

Exercises 12.3

7. (a) $\mathbf{v} \cdot \mathbf{u}=5 \times 2+1 \times \sqrt{17}=10+\sqrt{17}$
$|\mathbf{v}|=\sqrt{5^{2}+1^{2}}=\sqrt{26}$
$|\mathbf{u}|=\sqrt{2^{2}+(\sqrt{17})^{2}}=\sqrt{21}$
(b) cosine of angle between \mathbf{v} and $\mathbf{u} \cos \theta=\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v} \| \mathbf{u}|}=\frac{10+\sqrt{17}}{(\sqrt{26})(\sqrt{21})}=\frac{10+\sqrt{17}}{\sqrt{546}}$
(c) the scalar component of \mathbf{u} in the direction of $\mathbf{v}=|\mathbf{u}| \cos \theta=\frac{10+\sqrt{17}}{\sqrt{26}}$
(d) the vector $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{v}|^{2}} \mathbf{v}=\frac{10+\sqrt{17}}{26}(5 \mathbf{i}+\mathbf{j})$
8. $\overrightarrow{A B}=(3,1), \overrightarrow{B C}=(-1,-3)$ and $\overrightarrow{A C}=(2,-2) \cdot \overrightarrow{B A}=(-3,-1), \overrightarrow{C B}=(1,3), \overrightarrow{C A}=$ $(-2,2)$.
$|\overrightarrow{A B}|=|\overrightarrow{B A}|=\sqrt{10},|\overrightarrow{B C}|=|\overrightarrow{C B}|=\sqrt{10},|\overrightarrow{A C}|=|\overrightarrow{C A}|=2 \sqrt{2}$
Angle at $\mathrm{A}=\cos ^{-1}\left(\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}\right)=\cos ^{-1}\left(\frac{3(2)+1(-2)}{(\sqrt{10})(2 \sqrt{2})}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) \approx 63.435^{\circ}$
Angle at $\mathrm{B}=\cos ^{-1}\left(\frac{\overrightarrow{B C} \cdot \overrightarrow{B A}}{|\overrightarrow{B C}||\overrightarrow{B A}|}\right)=\cos ^{-1}\left(\frac{3}{5}\right) \approx 53.130^{\circ}$
Angle at $\mathrm{C}=\cos ^{-1}\left(\frac{\overrightarrow{C B} \cdot \overrightarrow{C A}}{|\overrightarrow{C B}||\overrightarrow{C A}|}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) \approx 63.435^{\circ}$
9. $\overrightarrow{C A} \cdot \overrightarrow{C B}=(-\mathbf{v}+(-\mathbf{u})) \cdot(-\mathbf{v}+\mathbf{u})=\mathbf{v} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{u}=|\mathbf{v}|^{2}-|\mathbf{u}|^{2}=0$ because $|\mathbf{u}|=|\mathbf{v}|$ since both equal to the radius of the circle. Therefore, $\overrightarrow{C A}$ and $\overrightarrow{C B}$ are orthogonal.
10. $(x \mathbf{i}+y \mathbf{j}) \cdot \mathbf{v}=|x \mathbf{i}+y \mathbf{j} \| \mathbf{v}| \cos \theta \leq 0$ when $\frac{\pi}{2} \leq \theta \leq \pi$. This means (x, y) has to be a point whose position vector makes an angle with \mathbf{v} greater of equals to 90°.

11. No, $\mathbf{v}_{1}, \mathbf{v}_{2}$ need not to be the same. For instance, $\mathbf{2 i}+\mathbf{j} \neq \mathbf{i}+\mathbf{j}$ but $(\mathbf{2} \mathbf{i}+\mathbf{j}) \cdot \mathbf{j}=1=(\mathbf{i}+\mathbf{j}) \cdot \mathbf{j}$. 31. If $a \neq 0$, then the slope of \mathbf{v} is $\frac{b}{a}$ and the slope of $a x+b y=c$ is $-\frac{a}{b}$, so the slope of the vector \mathbf{v} is the negative reciprocal of the slope of the given line. If $a=0$, then $\mathbf{v}=b \mathbf{j}$ is perpendicular to the horizontal line $b y=c$. In either case, the vector \mathbf{v} is perpendicular to the line $a x+b y=c$.
12. If $a \neq 0$, then the slope of \mathbf{v} is $\frac{b}{a}$ and the slope of $b x-a y=c$ is $\frac{b}{a}$. If $a=0$, then $\mathbf{v}=b \mathbf{j}$ is parallel to the vertical line $b \stackrel{a}{x}=c$. In either case, the vector $\stackrel{a}{\mathbf{v}}$ is parallel to the line $b x-a y=c$.
13. $\mathbf{v}=-2 \mathbf{i}+\mathbf{j}$ is perpendicular to the line $-2 x+y=c ; P(-2,-7)$ is on the line $\Rightarrow-2(-2)-$ $7=c \Rightarrow-2 x+y=-3$.

14. $\mathbf{v}=-\mathbf{i}-2 \mathbf{j}$ is parallel to the line $-2 x+y=c ; P(1,2)$ is on the line $\Rightarrow-2(1)+2=c \Rightarrow$ $-2 x-y=0$ or $2 x-y=0$.

15. $\mathbf{n}_{1}=3 \mathbf{i}-4 \mathbf{j}$ and $\mathbf{n}_{2}=\mathbf{i}-\mathbf{j}$.
$\theta=\cos ^{-1}\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}\right)=\cos ^{-1}\left(\frac{3+4}{(\sqrt{25})(\sqrt{2})}\right)=\cos ^{-1}\left(\frac{7}{5 \sqrt{2}}\right)=0.14 \mathrm{rad}$.

Exercises 12.4

7. $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -8 & -2 & -4 \\ 2 & 2 & 1\end{array}\right|=6 \mathbf{i}-12 \mathbf{k}$.
lenght $=6 \sqrt{5}$ and the direction is $\frac{1}{\sqrt{5}} \mathbf{i}-\frac{2}{\sqrt{5}} \mathbf{k}$
$\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})=-6 \mathbf{i}+12 \mathbf{k}$, lenght $=6 \sqrt{5}$ and the direction is $-\frac{1}{\sqrt{5}} \mathbf{i}+\frac{2}{\sqrt{5}} \mathbf{k}$
8. $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right|=-2 \mathbf{k}$

9. (a) $\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|=-\mathbf{i}+\mathbf{j}$

$$
\text { Area }=\frac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}|=\frac{1}{2} \sqrt{1+1}=\frac{\sqrt{2}}{2}
$$

(b) $\mathbf{u}=\frac{\overrightarrow{P Q} \times \overrightarrow{P R}}{|\overrightarrow{P Q} \times \overrightarrow{P R}|}=\frac{1}{\sqrt{2}}(-\mathbf{i}+\mathbf{j})$
21. $|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|=\operatorname{abs}\left|\begin{array}{ccc}2 & 1 & 0 \\ 2 & -1 & 0 \\ 1 & 0 & 2\end{array}\right|=|-7|=7$
23. (a) $\mathbf{u} \cdot \mathbf{v}=-6, \mathbf{u} \cdot \mathbf{w}=-81, \mathbf{v} \cdot \mathbf{w}=18$. Therefore, none are perpendicular.
(b) $\mathbf{u} \times \mathbf{v}=\operatorname{abs}\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & -1 & 1 \\ 0 & 1 & -5\end{array}\right| \neq 0$
$\mathbf{u} \times \mathbf{w}=\operatorname{abs}\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & -1 & 1 \\ -15 & 3 & -3\end{array}\right|=0$
$\mathbf{v} \times \mathbf{w}=\mathrm{abs}\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & -5 \\ -15 & 3 & -3\end{array}\right| \neq 0$
Therefore, \mathbf{u} and \mathbf{w} are parallel.
27. (a) always ture, $\mid \mathbf{u}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=\sqrt{\mathbf{u} \cdot \mathbf{u}}$
(b) not always true, $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
(c) always ture, $\mathbf{u} \times \mathbf{0}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ 0 & 0 & 0\end{array}\right|=0=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & 0 \\ u_{1} & u_{2} & u_{3}\end{array}\right|=\mathbf{0} \times \mathbf{u}$
(d) always ture,

$$
\begin{aligned}
\mathbf{u} \times(-\mathbf{u}) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
-u_{1} & -u_{2} & -u_{3}
\end{array}\right| \\
& =\left(-u_{2} u_{3}+u_{2} u_{3}\right) \mathbf{i}-\left(-u_{1} u_{3}+u_{1} u_{3}\right) \mathbf{j}+\left(-u_{1} u_{2}+u_{1} u_{2}\right) \mathbf{k} \\
& =\mathbf{0}
\end{aligned}
$$

(e) not always true, counter example, $\mathbf{j} \times \mathbf{k}=\mathbf{i} \neq-\mathbf{i}=\mathbf{k} \times \mathbf{j}$
(f) always ture, distributive property of the cross product
(g) always ture, $(\mathbf{u} \times \mathbf{v})$ is always parallel to \mathbf{v}, thus $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$
(h) always ture,, the volume of a parallelpiped with \mathbf{u}, \mathbf{v} and \mathbf{w} along the three edges is the same whether the plane containing \mathbf{u} and \mathbf{v} or the plane containing \mathbf{v} and \mathbf{w} is used as the base plane, and the dot product is commutative.
28. (a) always ture, $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}=\mathbf{v} \cdot \mathbf{u}$
(b) always ture, $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|=-\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_{1} & v_{2} & v_{3} \\ u_{1} & u_{2} & u_{3}\end{array}\right|=-(\mathbf{v} \times \mathbf{u})$
(c) always ture, $(-\mathbf{u}) \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -u_{1} & -u_{2} & -u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|=-\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|=-(\mathbf{u} \times \mathbf{v})$
(d) always ture,

$$
\begin{aligned}
(c \mathbf{u}) \cdot \mathbf{v} & =\left(c u_{1}\right) v_{1}+\left(c u_{2}\right) v_{2}+\left(c u_{3}\right) v_{3} \\
& =u_{1}\left(c v_{1}\right)+u_{2}\left(c v_{2}\right)+u_{3}\left(c v_{3}\right) \\
& =\mathbf{u} \cdot(c \mathbf{v}) \\
& =c\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \\
& =c(\mathbf{u}) \cdot \mathbf{v})
\end{aligned}
$$

(e) always ture,

$$
\begin{aligned}
c(\mathbf{u}) \times \mathbf{v}) & =c\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
c u_{1} & c u_{2} & c u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =(c \mathbf{u}) \times \mathbf{v} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
c v_{1} & c v_{2} & c v_{3}
\end{array}\right| \\
& =\mathbf{u} \times(c \mathbf{v})
\end{aligned}
$$

(f) always ture, $\mathbf{u} \cdot \mathbf{u}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=\left(\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}\right)^{2}=|\mathbf{u}|^{2}$
(g) always true, $(\mathbf{u} \times \mathbf{u}) \cdot \mathbf{u}=\mathbf{0} \cdot \mathbf{u}=0$
(h) always true, $\mathbf{u} \times \mathbf{v} \perp \mathbf{u}$ and $\mathbf{u} \times \mathbf{v} \perp \mathbf{v} \Rightarrow(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})=0$
39. $\overrightarrow{A B}=3 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k}$ and $\overrightarrow{D C}=3 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k} \Rightarrow \overrightarrow{A B}$ is parallel to $\overrightarrow{D C} ; \overrightarrow{B C}=2 \mathbf{i}-\mathbf{j}$ and $\overrightarrow{A D}=2 \mathbf{i}-\mathbf{j} \Rightarrow \overrightarrow{B C}$ is parallel to $\overrightarrow{A D}$.
$\overrightarrow{A B} \times \overrightarrow{B C}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & 4 \\ 2 & -1 & 0\end{array}\right|=4 \mathbf{i}+8 \mathbf{j}-7 \mathbf{k} \Rightarrow$ Area $=|\overrightarrow{A B} \times \overrightarrow{B C}|=\sqrt{129}$
48. $\overrightarrow{A B}=\mathbf{i}+2 \mathbf{j}, \overrightarrow{A C}=-3 \mathbf{i}+2 \mathbf{k}$ and $\overrightarrow{A D}=3 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k}$

Therefore, $(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}=\left|\begin{array}{ccc}1 & 2 & 0 \\ 0 & -3 & 2 \\ 3 & -4 & 5\end{array}\right|=5 \Rightarrow$ Volume $=|(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}|=5$

Exercises 12.5

3. The direction $\overrightarrow{P Q}=5 \mathbf{i}+5 \mathbf{i}+5 \mathbf{i}$ and $P(-2,0,3) \rightarrow x=-2+5 t, y=5 t, z=3-5 t$
4. The direction \mathbf{k} and $P(1,1,1) \Rightarrow x=1, y=1, z=1+t$
5. The direction $\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ and $P(0,-7,0) \Rightarrow x=t, y=-7+2 t, z=2 t$
6. The direction $\overrightarrow{P Q}=-2 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$ and $P(2,0,2) \Rightarrow x=2-2 t, y=2 t, z=2-2 t$, where $0 \leq t \leq 1$

7. Let $P=(1,1,-1), Q=(2,0,2)$ and $S=(0,-2,1)$. Then $\overrightarrow{P Q}=\mathbf{i}-\mathbf{j}+3 \mathbf{k}, \overrightarrow{P S}=$ $-\mathbf{i}-3 \mathbf{j}+2 \mathbf{k} \Rightarrow \overrightarrow{P Q} \times \overrightarrow{P S}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 3 \\ -1 & -3 & 2\end{array}\right|=7 \mathbf{i}-5 \mathbf{j}-4 \mathbf{k}$ is normal to the plane. Therefore, $7(x-2)+(-5)(y-0)+(-4)(z-2)=0 \Rightarrow 7 x-5 y-4 z=6$
8. $\mathbf{n}=\mathbf{i}+3 \mathbf{j}+4 \mathbf{k}, P_{0}(2,4,5) \Rightarrow(1)(x-2)+(3)(y-4)+(4)(z-5)=0 \Rightarrow x+3 y+4 z=34$
9.

$$
\left\{\begin{array} { l }
{ x = 2 t + 1 = s + 2 } \\
{ 6 = 3 t + 2 = 2 s + 4 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
2 t-s & =1 \\
3 t-2 s & =2
\end{array} \Rightarrow t=0 \text { and } s=-1\right.\right.
$$

Then $z=4 t+3=-4 s-1 \Rightarrow 4(0)+3=(-4)(-1)-1$ is satisfied \Rightarrow the lines intersect when $t=0$ and $s=-1 \Rightarrow$ the point of intersection is $x=1, y=2$ and $z=3$ or $P(1,2,3)$. A vector normal to the plane determined by these lines is $\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 4 \\ 1 & 2 & -4\end{array}\right|=$ $-20 \mathbf{i}+12 \mathbf{j}+\mathbf{k}$, when $\mathbf{n}_{\mathbf{1}}$ and $\mathbf{n}_{\mathbf{2}}$ are directions of the lines \Rightarrow the plane containing the lines is represented by $(-20)(x-1)+(12)(y-2)+(1)(z-3)=0 \Rightarrow-20 x+12 y+z=7$.
29. The cross product of $\mathbf{i}+\mathbf{j}-\mathbf{k}$ and $-4 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$ has the same direction as the normal to the plane
$\Rightarrow \mathbf{n}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ -4 & 2 & -2\end{array}\right|=6 \mathbf{j}+6 \mathbf{k}$. Select a point on either line, such as $P(-1,2,1)$. Since the lines are given to intersect, the desired plane is $(x+1)+6(y-2)+6(z-1)=0 \Rightarrow$ $6 y+6 z=18 \Rightarrow y+z=3$.
31. $\mathbf{n}_{\mathbf{1}} \times \mathbf{n}_{\mathbf{2}}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ 1 & 2 & 1\end{array}\right|=3 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k}$ is a vector in the direction of the line of intersection of the planes $\Rightarrow 3(x-2)+(-3)(y-1)+3(z+1)=0 \Rightarrow 3 x-3 y+3 z=0 \Rightarrow x-y+z=0$ is the desired plane containing $P_{0}(2,1,-1)$.
37. $S(2,1,-1), P(0,1,0)$ and $\mathbf{v}=2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k} \Rightarrow \overrightarrow{P S} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -1 \\ 2 & 2 & 2\end{array}\right|=2 \mathbf{i}-6 \mathbf{j}+4 \mathbf{k}$. Therefore, $d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}=\frac{\sqrt{4+36+16}}{\sqrt{4+4+4}}=\sqrt{\frac{14}{3}}$ is the distance from S to the line.
43. $S(2,2,3), 2 x+y+2 z=4$ and $P(2,0,0)$ is on the plane $\Rightarrow \overrightarrow{P S}=2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{n}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ Therefore, $d=\left|\overrightarrow{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=\left|\frac{2+6}{\sqrt{4+1+4}}\right|=\frac{8}{3}$
45. The point $P(1,0,0)$ is on the first plane and $S(10,0,0)$ is a point on the second plane $\Rightarrow \overrightarrow{P S}=9 \mathbf{i}$, and $\mathbf{n}=\mathbf{i}+2 \mathbf{j}+6 \mathbf{k}$ is normal to the first plane \Rightarrow the distance from S to the first plane is

$$
d=\left|\overrightarrow{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=\frac{9}{\sqrt{41}}
$$

which is also the distance between the planes.
53. $2 x-y+3 z=6 \Rightarrow 2(1-t)-(3 t)+3(1+t)=6 \Rightarrow-2 t+5=6 \Rightarrow t=-\frac{1}{2} \Rightarrow x=\frac{3}{2}, y=-\frac{3}{2}$ and $z=\frac{1}{2} \Rightarrow\left(\frac{3}{2},-\frac{3}{2}, \frac{1}{2}\right)$ is the point.
61. L1 \& L2: $x=3+2 t=1+4 s$ and $y=-1+4 t=1+2 s \Rightarrow s=1$ and $t=1$. Therefore, L1 and L2 intersect at $(5,3,1)$
L2 \& L3: The direction of L2 is $\frac{1}{6}(4 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k})=\frac{1}{3}(2 \mathbf{i}+1 \mathbf{j}+2 \mathbf{k})$ which is the same as the direction $\frac{1}{3}(2 \mathbf{i}+1 \mathbf{j}+2 \mathbf{k})$ of L3. Therefore, L2 and L3 are parallel.

L1 \& L3: $x=3+2 t=3+2 r$ and $y=-1+4 t=1+2 r \Rightarrow t=1$ and $r=1 \Rightarrow$ on L1, $z=2$ but on $\mathrm{L} 3 z=0 \Rightarrow \mathrm{~L} 1$ and L2 do not intersect. The direction of L1 is $\frac{1}{\sqrt{21}}(2 \mathbf{i}+4 \mathbf{j}-\mathbf{k})$ while the direction of L3 is $\frac{1}{3}(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k})$ and neither is a multiple of the other; hence L1 and L3 are skew.
67. With substitution of the line into the plane we have $2(1-2 t)+(2+5 t)-(-3 t)=8 \Rightarrow$ $2-4 t+2+5 t+3 t=8 \Rightarrow 4 t+4=8 \Rightarrow t=1 \Rightarrow$ the point $(-1,7,-3)$ is contained in both the line and plane, so they are not parallel.

