MATH 2010A/B Advanced Calculus I
 (2014-2015, First Term)
 Homework 1
 Suggested Solution

Exercises 12.1

11. The circle $x^{2}+y^{2}=16$ in the $x y$-plane.
12. The ellipse formed by the intersection of the cylinder $x^{2}+y^{2}=4$ and the plane $z=y$.
13. The parabola $y=x^{2}$ in the the $x y$-plane.
14. (a) The first quadrant of the $x y$-plane
(b) The fourth quadrant of the $x y$-plane
15. (a) The solid ball of radius 1 centered at the origin
(b) The exterior of the sphere of radius 1 centered at the origin
16. (a) The solid enclosed between the sphere of radius 1 and radius 2 centered at the origin
(b) The solid upper hemisphere of radius 1 centered at the origin
17. (a) The region on or inside the parabola $y=x^{2}$ in the $x y$-plane and all points above this region.
(b) The region on or to the left of the parabola $x=y^{2}$ in the $x y$-plane and all points above it that are 2 units or less away from the $x y$-plane.
18. (a) $z=1$
(b) $x=3$
(c) $y=-1$
19. (a) $x^{2}+(y-2)^{2}=4, z=0$
(b) $(y-2)^{2}+z^{2}=4, x=0$
(c) $x^{2}+z^{2}=4, y=2$
20. (a) $y=3, z=-1$
(b) $x=1, z=-1$
(c) $x=1, y=3$
21. $x^{2}+y^{2}+z^{2}=25, z=3 \Rightarrow x^{2}+y^{2}=16$ in the plane $z=3$
22. $0 \leq z \leq 1$
23. $z \leq 0$
24. $2 x^{2}+2 y^{2}+2 z^{2}+x+y+z=9$
$\Rightarrow x^{2}+\frac{1}{2} x+y^{2}+\frac{1}{2} y+z^{2}+\frac{1}{2} z=\frac{9}{2}$
$\Rightarrow\left(x^{2}+\frac{1}{2} x+\frac{1}{16}\right)^{2}+\left(y^{2}+\frac{1}{2} y+\frac{1}{16}\right)+\left(z^{2}+\frac{1}{2} z+\frac{1}{16}\right)=\frac{9}{2}+\frac{3}{16}$
$\Rightarrow\left(x+\frac{1}{4}\right)^{2}+\left(y+\frac{1}{4}\right)^{2}+\left(z+\frac{1}{4}\right)^{2}=\left(\frac{5 \sqrt{3}}{4}\right)^{2}$
\Rightarrow the center is at $\left(-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}\right)$ and the radius is $\frac{5 \sqrt{3}}{4}$
25. (a) the distance between (x, y, z) and $(x, 0,0)$ is $\sqrt{y^{2}+z^{2}}$
(b) the distance between (x, y, z) and $(0, y, 0)$ is $\sqrt{x^{2}+z^{2}}$
(c) the distance between (x, y, z) and $(0,0, z)$ is $\sqrt{x^{2}+y^{2}}$
26. (a) the distance between (x, y, z) and $(x, y, 0)$ is z
(b) the distance between (x, y, z) and $(0, y, z)$ is x
(c) the distance between (x, y, z) and $(x, 0, z)$ is y

Exercises 12.2

7. (a) $\frac{3}{5} \mathbf{u}=\left\langle\frac{9}{5},-\frac{6}{5}\right\rangle$

$$
\frac{4}{5} \mathbf{v}=\left\langle-\frac{8}{5}, 4\right\rangle
$$

$$
\frac{3}{5} \mathbf{u}+\frac{4}{5} \mathbf{v}=\left\langle\frac{9}{5}+\left(-\frac{8}{5}\right),-\frac{6}{5}+4\right\rangle=\left\langle\frac{1}{5}, \frac{14}{5}\right\rangle
$$

(b) $\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{14}{5}\right)^{2}}=\frac{\sqrt{197}}{5}$
12. $\overrightarrow{A B}=<2-1,0-(-1)>=<1,1>$ $\overrightarrow{C D}=<-2-(-1), 2-3>=<-1,-1>$
$\overrightarrow{A B}+\overrightarrow{C D}=<0,0>$
19. $\overrightarrow{A B}=(-10-(-7)) \mathbf{i}+(8-(-8)) \mathbf{j}+(1-1) \mathbf{k}=-3 \mathbf{i}+16 \mathbf{j}$
21. $5 \mathbf{u}-\mathbf{v}=5\langle 1,1,-1\rangle-\langle 2,0,3\rangle=\langle 3,5,-8\rangle=3 \mathbf{i}+5 \mathbf{j}-8 \mathbf{k}$
33. $|\mathbf{v}|=\sqrt{12^{2}+5^{2}}=\sqrt{169}=13 ; \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{13} \mathbf{v}=\frac{1}{13}(12 \mathbf{i}-5 \mathbf{k})$
\Rightarrow the desired vector is $\frac{7}{13}(12 \mathbf{i}-5 \mathbf{k})$
34. $|\mathbf{v}|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{3}}{2} ; \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{\sqrt{3}} \mathbf{i}-\frac{1}{\sqrt{3}} \mathbf{j}-\frac{1}{\sqrt{3}} \mathbf{k}$ \Rightarrow the desired vector is $-3\left(\frac{1}{\sqrt{3}} \mathbf{i}-\frac{1}{\sqrt{3}} \mathbf{j}-\frac{1}{\sqrt{3}} \mathbf{k}\right)=-\sqrt{3} \mathbf{i}+\sqrt{3} \mathbf{j}+\sqrt{3} \mathbf{k}$
41. $2 \mathbf{i}+\mathbf{j}=a(\mathbf{i}+\mathbf{j})+b(\mathbf{i}-\mathbf{j})$
$\Rightarrow a+b=2$ and $a-b=1$
$\Rightarrow 2 a=3 \Rightarrow a=\frac{3}{2}$ and $b=a-1=\frac{1}{2}$
42. $\mathbf{i}-2 \mathbf{j}=a(2 \mathbf{i}+3 \mathbf{j})+b(\mathbf{i}-\mathbf{j})=(2 a+b) \mathbf{i}+(3 a+b) \mathbf{j}$
$\Rightarrow 2 a+b=1$ and $3 a+b=-2$
$\Rightarrow a=-3$ and $b=1-2 a=7$
$\Rightarrow \mathbf{u}_{1}=a(2 \mathbf{i}+3 \mathbf{j})=-6 \mathbf{i}-9 \mathbf{j}$ and $\mathbf{u}_{2}=b(\mathbf{i}+\mathbf{j})=7 \mathbf{i}+7 \mathbf{j}$
56. Let \mathbf{u} be any unit vector in the plane. If \mathbf{u} is positioned so that its initial point is at the origin and terminal point is at (x, y), then \mathbf{u} makes an angle θ with \mathbf{i}, measured in the counter-clockwise direction. Since $|\mathbf{u}|=1$, we have that $x=\cos \theta$ and $y=\sin \theta$. Thus $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$. Since \mathbf{u} was assumed to be any unit vector in the plane, this holds for every unit vector in the plane.

