THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010G University Mathematics 2014-2015
Test 1, 10 Feb, 2015

- Time allowed: 45 minutes
- Answer all questions.
- Show your work clearly and concisely in your answer book.
- Write down your name and student ID number on the front page of your answer book.
- You are allowed to use a calculator in this test.

1. Evaluate each of the following limits.
(a) $\lim _{n \rightarrow \infty} \frac{5 n^{2}-1}{n^{2}-3 n+2}$.
(b) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n+1}$.
(12 points)
2. By using sandwich theorem, find the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{3}+1}}+\frac{1}{\sqrt[3]{n^{3}+2}}+\cdots+\frac{1}{\sqrt[3]{n^{3}+n}}
$$

3. Evaluate each of the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{x}$.
(b) $\lim _{x \rightarrow+\infty} \frac{e^{x+1}+e^{-(x+1)}}{e^{x-1}-e^{-(x+1)}}$.
(c) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{4 x^{2}-x+1}}$.
4. Let $f(x)=\left\{\begin{array}{cll}x^{2} & \text { if } & x \geq 0 \\ 0 & \text { if } & x<0\end{array}\right.$.
(a) Prove that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
(b) Is $f^{\prime}(x)$ differentiable at $x=0$?
5. By using mean value theorem, prove that for any $x>y>0$,

$$
n y^{n-1}(x-y) \leq x^{n}-y^{n} \leq n x^{n-1}(x-y)
$$

where n is a natural number.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

- $f(x+y)=f(x) f(y)$ for all real numbers x and y;
- $1+x \leq f(x) \leq 1+x f(x)$ for all real numbers x.
(a) Show that
(i) $f(0)=1$,
(ii) $f(x)>1$ for $x>0$,
(iii) $f(x)>0$ for all real number x.

Hence, deduce that $f(x)$ is strictly increasing, that means if $a>b$, then $f(a)>f(b)$.
(b) Show that if $h<1$, we have

$$
1+h \leq f(h) \leq \frac{1}{1-h}
$$

Hence, show that $f(x)$ is continuous at $x=0$.
(c) Show that $f(x)$ is differentiable at $x=0$ and find $f^{\prime}(0)$.

